精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).

(1)当直线AB经过点C时,点O到直线AB的距离是
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.

【答案】
(1)
(2)12
【解析】解:(1)当直线AB经过点C时,点A与点C重合,
当x=2时,y=-2+m=0,即m=2.
∴直线AB为y=-x+2,则B(0,2)
∴OB=OA=2,AB=2
设点O到直线AB的距离是d,
由S△OAB=
则4=2 d,
∴d= .
2)作OD=OC=2,则∠PDC=45°,如图,

由y=-x+m可得A(m,0),B(0,m),
则可得OA=OB,则∠OBA=∠OAB=45°,
当m<0时,∠APO>∠OBA=45°,∴此时∠CPA>45°,故不符合,
∴m>0.
∵∠CPA=∠ABO=45°,
∴∠BPA+∠OPC=∠BAP+∠BPA=135°,
即∠OPC=∠BAP,
则△PCD~△APB,


解得m=12.
所以答案是 ;12.
【考点精析】根据题目的已知条件,利用一次函数的性质和相似三角形的应用的相关知识可以得到问题的答案,需要掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,D为∠BAC的外角平分线上一点并且满足BD=CDDBC=DCB,过DDEACEDFABBA的延长线于F,则下列结论:

①△CDEBDFCE=AB+AE③∠BDC=BAC④∠DAF=CBD.

其中正确的结论有(.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明对我校七年级(1)班喜欢什么球类运动的调查,下列图形中的左图是小明对所调查结果的条形统计图.

(1)问七年级(1)班共有多少学生?

(2)请你改用扇形统计图来表示我校七年级(1)班同学喜欢的球类运动.

(3)从统计图中你可以获得哪些信息?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,ABC=2C,BE平分∠ABCACE,ADBED,下列结论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=C;BC=4AD,其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=30°,将ABC绕点B旋转α(0<α<60°)到A′BC′,AC和边A′C′相交于点P,边AC和边BC′相交于Q.BPQ为等腰三角形时,则α=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数 的图象与反比例函数 的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为12.

(1)求k的值;
(2)根据图象,当 时,写出自变量 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中有点B﹣10)和y轴上一动点A0a),其中a0,以A点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(cd).

1)当a=2时,则C点的坐标为      );

2)动点A在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.

3)当a=2时,在坐标平面内是否存在一点P(不与点C重合),使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

同步练习册答案