精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中的每个小正方形的边长都为1,在建立平面直角坐标系后,ABC的顶点均在格点上.

1)以点A为旋转中心,将ABC绕点A顺时针旋转90°得到AB1C1,画出AB1C1

2)画出ABC关于原点O成中心对称的A2B2C2,若点B的坐标为(-2-2),则点B2的坐标为_________

3)若A2B2C2可看作是由AB1C1绕点P顺时针旋转90°得到的,则点P的坐标为______.

【答案】1)见解析;(2)图见解析;(22);(3)(0-1

【解析】

1)利用网格特点和旋转的性质画出BC的对应点B1C1,从而得到△AB1C1

2)利用关于原点对称的点的坐标特征写出A2B2C2的坐标,然后描点连线即可;

3)连接A1A2C1C2,作A1A2C1C2的垂直平分线交于点P,观察图形即可得出结论.

1)如图,△AB1C1为所作;

2)如图,△A2B2C2为所作;若点B的坐标为(-2-2),则点B2的坐标为(22);

3)连接A1A2C1C2,作A1A2C1C2的垂直平分线交于点P,由图可知:P0-1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°

(1)求B、C两点的坐标;

(2)过点G()作GFAC,垂足为F,直线GF分别交AB、OC于点E、D,求直线DE的解析式;

(3)的条件下,若点M在直线DE上,平面内是否存在点P,使以O、F、M、P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分如图,在ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.

(1)求证:△AEB≌△CFD;
(2)若四边形EBFD是菱形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称            

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.

(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

(4)若将图2中△ABC绕顶点B按顺时针方向旋转a度(0°<a<90°),得到△DBE,连接AD、DC,则∠DCB=      °,四边形ABCD是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,线段ABx轴上点AB的坐标分别为(﹣10),(30),现同时将点AB分别向上平移2个单位,再向右平移1个单位,分别得到点AB的对应点CD,连接ACBDCD.得平行四边形ABDC

1)补全图形,直接写出点CD的坐标;

2)若在y轴上存在点M,连接MAMB,使SMAB=S四边形ABDC,求出点M的坐标.

3)若点P在直线BD上运动,连接PCPO.请画出图形,探索∠CPO、∠DCP、∠BOP的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学对本校初2017500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:

(1)该校毕业生中男生有 人;扇形统计图中a=

(2)补全条形统计图;

(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MON = 50°OE 平分∠MON,点ABC分别是射线OMOEON上的动点(ABC不与点O重合),连接AC交射线OE于点D、设∠OAC = x°.


1)如图①,若AB//ON

①则∠ABO 的度数是________

②当∠BAD =ABD 时,x=_______;当∠BAD = BDA 时,x=________

2)如图②,若ABOE,则是否存在这样的x值,使得 ABD 中有一个角是另一个角的两倍.存在,直接写出x的值;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象经过点M(2,1)
(1)求该函数的表达式;
(2)当2<x<4时,求y的取值范围(直接写出结果).

查看答案和解析>>

同步练习册答案