【题目】定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.
(1)判断:
①在平行四边形、矩形、菱形中,一定是神奇四边形的是 ;
②命题:如图1,在四边形中,则四边形是神奇四边形.此命题是_____(填“真”或“假”)命题;
③神奇四边形的中点四边形是
(2)如图2,分别以的直角边和斜边为边向外作正方形和正方形,连接
①求证:四边形是神奇四边形;
②若,求的长;
(3)如图3,四边形是神奇四边形,若分别是方程的两根,求的值.
【答案】(1)菱形;真;矩形;(2)①见解析,②;(3)5
【解析】
(1)①根据神奇四边形的定义即可判断;
②连接AC、BD,根据SSS证明△ADC≌△ABC得出∠DAC=∠BAC,再利用等腰三角形三线合一的性质证明AC⊥BD即可得到结论;
③根据四边形对角线互相垂直,运用三角形中位线平行于第三边证明四个角都是直角,判断是矩形.
(2)①判断出CE⊥BG,即可得出四边形BCGE是神奇四边形;
②利用勾股定理即得出,再把相关数据代入求解即可;
(3)利用勾股定理即可得出,把,代入求得,再由方程得到,,进而得出,求解方程即可.
①∵在平行四边形、矩形、菱形中,两条对角线互相垂直的四边形是菱形,
∴菱形一定是神奇四边形;
故答案为:菱形;
②连接AC、BD,
在△ACD和△ACB中,
∴△ACD≌△ACB
∴∠DAC=∠BAC
∵AB=AD
∴AC⊥BD
∴四边形是神奇四边形.
故答案为:真;
③如图:∵E、F、G、H分别为各边中点,
∴EF∥GH∥AC,EF=GH=AC,
EH=FG=DB,EH∥FG∥BD,
∵DB⊥AC,
∴EF⊥EH,
∴四边形EFGH是矩形.
故答案为:矩形;
证明:连接相交于点交于点,如图所
正方形和正方形,
,
,即
在和中,
,
,
,
,即
四边形是神奇四边形;
②四边形是神奇四边形,
,
由勾股定理得
,
,
正方形和正方形,
,
.
四边形是神奇四边形,同中②的证明方法,可得
又分别是方程的两根.
解得
当时,不合题意,所以舍去,
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块直角三角板如图1放置,等腰直角三角板ABC的直角顶点是点A,AB=AC=3,直角板EDF的直角顶点D在BC上,且CD:BD=1:2,∠F=30°.三角板ABC固定不动,将三角板EDF绕点D逆时针旋转,旋转角为α(0°<α<90°).
(1)当α= 时,EF∥BC;
(2)当α=45°时,三角板EDF绕点D逆时针旋转至如图2位置,设DF与AC交于点M,DE交AB于点N,求四边形ANDM的面积.
(3)如图3,设CM=x,四边形ANDM的面积为y,求y关于x的表达式(不用写x的取值范围).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为的山坡上加装了信号塔(如图所示),信号塔底端到坡底的距离为3.9米.同时为了提醒市民,在距离斜坡底4.4米的水平地面上立了一块警示牌.当太阳光线与水平线成53°角时,测得信号塔落在警示牌上的影子长为3米,则信号塔的高约为(tan53°≈1.3)( ).
A.10.4B.11.9C.11.4D.13.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y= 在第一象限内的图象交于点B(,n).连接OB,若S△AOB=1.
(1)求反比例函数与一次函数的关系式;
(2)直接写出不等式组 的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)过A(-1,1),B(3,1),C(-2,y1),D(2,y2)四点,则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.
(1)统计图中______,______;
(2)若该校有1500名学生,请估计选择基地的学生人数;
(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.
(1)求证:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com