【题目】阅读材料:
材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣,x1x2=.
材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.
解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1,所以=﹣3.
根据上述材料解决以下问题:
(1)材料理解:一元二次方程5x2+10x﹣1=0的两个根为x1,x2,则x1+x2= ,x1x2= .
(2)类比探究:已知实数m,n满足7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,求m2n+mn2的值:
(3)思维拓展:已知实数s、t分别满足19s2+99s+1=0,t2+99t+19=0,且st≠1.求的值.
【答案】(1)-2,-;(2)﹣;(3)﹣.
【解析】
(1)直接利用根与系数的关系求解;
(2)把m、n可看作方程7x2﹣7x﹣1=0,利用根与系数的关系得到m+n=1,mn=﹣,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整体的方法计算;
(3)先把t2+99t+19=0变形为19()2+99+1=0,则把实数s和可看作方程19x2+99x+1=0的两根,利用根与系数的关系得到s+=﹣,s=,然后变形为s+4+,再利用整体代入的方法计算.
解:(1)x1+x2=﹣=﹣2,x1x2=﹣;
故答案为﹣2;﹣;
(2)∵7m2﹣7m﹣1=0,7n2﹣7n﹣1=0,且m≠n,
∴m、n可看作方程7x2﹣7x﹣1=0,
∴m+n=1,mn=﹣,
∴m2n+mn2=mn(m+n)=﹣×1=﹣;
(3)把t2+99t+19=0变形为19()2+99+1=0,
实数s和可看作方程19x2+99x+1=0的两根,
∴s+=﹣,s=,
∴=s+4+=﹣+4×=﹣.
科目:初中数学 来源: 题型:
【题目】我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y=图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABCD=9,则k值为( )
A.8B.10C.12D.16.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).
(1)证明:四边形AECF是菱形;
(2)求菱形AECF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2 = OB·OE.
(1)求证:四边形AFCD是平行四边形;
(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.
请根据图象中的信息解决下列问题:
(1)求与之间的函数表达式;
(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;
(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线y=﹣2x2+bx+c过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D,抛物线的顶点为M,其对称轴交AB于点N.
(1)求抛物线的表达式及点M、N的坐标;
(2)是否存在点P,使四边形MNPD为平行四边形?若存在求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过点A(2,6).
(1)求这个反比例函数的解析式;
(2)这个函数的图象位于哪些象限?y随x的增大如何变化?
(3)点B(3,4),C(5,2),D(,)是否在这个函数图象上?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com