精英家教网 > 初中数学 > 题目详情

【题目】已知关于的方程

求证:无论取任何实数时,方程总有实数根;

当抛物线为正整数)图象与轴两个交点的横坐标均为整数,求此抛物线的解析式;

已知抛物线恒过定点,求出定点坐标.

【答案】证明见解析

【解析】

(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式0,方程总有实数根;

(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.

(3)根据题意得到kx2+(2k+1)x+2-y=0恒成立,由此列出关于x、y的方程组,通过解方程组求得该定点坐标.

证明:①当时,方程为,所以,方程有实数根,

②当时,∵,即

∴无论取任何实数时,方程总有实数根;

解:令,则

解关于的一元二次方程,得

∵二次函数的图象与轴两个交点的横坐标均为整数,且为正整数,

∴该抛物线解析式为

依题意得恒成立,即恒成立,

解得

所以该抛物线恒过定点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y=图象上的任意一点,过点A作AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则SDEC﹣SBEA=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(1)求抛物线解析式;

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?

(3)若点Q是直线y=﹣x上的动点,过Qy轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x y 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同时掷两个质地均匀的骰子,两个骰子向上一面的点数相同的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点边上,,若添加条件________,则四边形是矩形;若添加条件________,则四边形是菱形;若添加条件________,则四边形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ANCBBNAC同侧,BMCN交于点DACBC,且∠A+MDN180°.

1)如图1,当∠NAC90°,求证:BMCN

2)如图2,当∠NAC为锐角时,试判断BMCN关系并证明;

3)如图3,在(1)的条件下,且∠MBC30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连APFP.设四边形APFC面积为S,若AM1MC1,在E点运动过程中,请写出S的取值范围   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等腰直角三角形,点E为线段AC上一点(E点不和AC两点重合),连接BE并延长BE,在BE的延长线上找一点D,使ADCD,点F为线段AD上一点(F点不和AD两点重合),连接CF,交BD于点G

1)如图1,若ABCD1F是线段AD的中点,求CF

2)如图2,若点E是线段AC中点,CFBD,求证:CF+DEBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰中,DBC的中点,过点C于点G,过点B于点B,交CG的延长线于点F,连接DFAB于点E.

(1)求证:

(2)求证:AB垂直平分DF

(3)连接AF,试判断的形状,并说明理由.

查看答案和解析>>

同步练习册答案