【题目】如图,一次函数与反比例函数的图象交于,两点.
利用图中条件,求的值并求出反比例函数和一次函数的解析式;
根据图象直接写出时的取值范围;
求的面积.
【答案】,; 或;.
【解析】
(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入反比例解析式求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;
(2)根据一次函数与反比例函数的交点坐标,结合图形,找出满足题意不等式的解集即可;
(3)对于一次函数,确定出C与D坐标,三角形AOB面积=三角形AOC面积+三角形COD面积+三角形BOD面积,求出即可.
把代入反比例解析式得:,即反比例解析式为,
把代入反比例解析式得:,即,
把与代入一次函数解析式得:,
解得:,
则一次函数解析式为;
∵一次函数与反比例函数的交点为,,
∴由图象得:时的取值范围为或;
对于一次函数,
令,得到;令,得到,即,,
∴,
则.
科目:初中数学 来源: 题型:
【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】陕西,简称“陕”或“秦”,古老而神秘,犹如镶嵌在中国内陆腹地的一颗明珠,是中华民族的重要发祥地之一,也是烹饪文化的重要发源地.陕西著名的特色美食中,馍类有:炕炕馍、石子馍(分别记为A1、A2);糕点类有:水晶饼、琼锅糖(分别记为B1、B2);面食类有:臊子面、荞面饸饹(分别记为C1、C2).肖晓和陈梅同时去品尝陕西美食,肖晓打算在炕炕馍、水晶饼、荞面饸饹这三种美食中选择一种,陈梅打算在石子馍、琼锅糖、臊子面这三种美食中选择一种.
(1)用画树状图或列表法表示肖晓和陈梅选择美食的所有可能结果;
(2)求肖晓和陈梅同时选择的美食不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解
材料一:已知在平面直角坐标系中有两点,,其两点间的距离公式为:,当两点所在直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可化简为或;
材料二:如图1,点,在直线的同侧,直线上找一点,使得的值最小.解题思路:如图2,作点关于直线的对称点,连接交直线于,则点,之间的距离即为的最小值.
请根据以上材料解决下列问题:
(1)已知点在平行于轴的直线上,点在第二象限的角平分线上,,求点的坐标;
(2)如图,在平面直角坐标系中,点,点,请在直线上找一点,使得最小,求出的最小值及此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a,b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:从三角形一个顶点引出一条射线与对边相交,如果顶点与交点之间的线段把这个三角形分割成两个小的等腰三角形,那么我们就说原三角形为“可分割三角形”,这条线段叫做这个三角形的分割线.
(1)已知,,,则可分割三角形.(填“是”或“不是”)
(2)小愿研究发现,下图的两个三角形都是可分割三角形,请你画出每个三角形的分割线,并标出分成的等腰三角形顶角的度数.
(3)若是可分割三角形,,为钝角,请通过画图的方式写出所有可能的度数(画出图形,标示的度数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.
如果小王和小张按上述规则各转动转盘一次,则
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com