精英家教网 > 初中数学 > 题目详情
8.如图,点A的坐标为(6,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF和等腰Rt△ABE,∠FOB=∠ABE=90°,连结EF交y轴于P点.设BP=y,OB=x,请写出y关于x的函数表达式y=$\left\{\begin{array}{l}{3-\frac{1}{2}x(0<x<6)}\\{0(x=6)}\\{\frac{1}{2}x-3(x>6)}\end{array}\right.$.

分析 作EN⊥y轴于N,根据余角的性质得到∠NBE=∠BAO,推出△ABO≌△BEN(AAS),根据全等三角形的性质得到NE=OB=x,BN=AO=6,由△OBF是等腰直角三角形,得到BF=$\sqrt{2}$x,推出△OFP∽△PHE,根据相似三角形的性质得到$\frac{OP}{PN}=\frac{OF}{NE}$=1,得到OP=$\frac{1}{2}$ON=$\frac{1}{2}$(6+x即可得到结论.

解答 解:如图1,作EN⊥y轴于N,
∵∠ENB=∠BOA=∠ABE=90°,
∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,
∴∠NBE=∠BAO,
在△ABO和△BEN中,$\left\{\begin{array}{l}{∠AOB=∠BNE}\\{∠BAO=∠NBE}\\{AB=BE}\end{array}\right.$,
,∴△ABO≌△BEN(AAS),
∴NE=OB=x,BN=AO=6,
∵△OBF是等腰直角三角形,
∴BF=$\sqrt{2}$x,
∵∠FOP=∠ENP=90°,∠OPF=∠NPE,
∴△OFP∽△PHE,
∴$\frac{OP}{PN}=\frac{OF}{NE}$=1,
∴OP=$\frac{1}{2}$ON=$\frac{1}{2}$(6+x),
∴BP=OP-OB=3+$\frac{1}{2}$x-x=3-$\frac{1}{2}$x=y,(0<x<6),
当x=6时,y=0,∴F,E,B共线,
当x>6时,如图2,同理得到:OP=$\frac{1}{2}$PN=$\frac{1}{2}$(6+x),PB=OB-OP=x-$\frac{1}{2}$(6+x)=$\frac{1}{2}$x-3=y.
∴y关于x的函数表达式为:y=$\left\{\begin{array}{l}{3-\frac{1}{2}x(0<x<6)}\\{0(x=6)}\\{\frac{1}{2}x-3(x>6)}\end{array}\right.$.
故答案为:y=$\left\{\begin{array}{l}{3-\frac{1}{2}x(0<x<6)}\\{0(x=6)}\\{\frac{1}{2}x-3(x>6)}\end{array}\right.$.

点评 本题考查了三角形内角和定理,全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.$-\frac{{3π{a^2}b}}{7}$的系数是-$\frac{3π}{7}$,次数是3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)甲:9.8,9.9,10.1,10,10.2;乙:9.4,10.3,10.8,9.7,9.8.经计算,$\overline{x}$=10,$\overline{x}$=10,试根据这组数据估计甲种水稻品种的产量比较稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,函数y=ax2+bx+1(a≠0)的图象与x轴的正半轴交于点A,与x轴的负半轴交于点B,与y轴交于点C、P(1,-1),在△PAC中,∠P=90°,PA=PC.

(1)求点A的坐标;
(2)将△PAC沿AC翻折,若点P的对应点Q恰好落在函数y=ax2+bx+1(a≠0)的图象上,求a与b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,李老师早晨出门去锻炼,一段时间内沿⊙M的半圆形M→A→B→C→M路径匀速慢跑,那么李老师离出发点M的距离y与时间x之间的函数关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)如图,点C在线段AB上,线段AC=6cm,BC=10cm,点D、E分别是AC和BC的中点.求线段DE的长;
(2)若线段AB=acm,其他条件不变,则线段DE的长度为$\frac{1}{2}$acm(直接写出答案).
(3)对于(1),如果叙述为:“点C在直线AB上,线段AC=6cm,BC=10cm,点D、E分别是AC和BC的中点,求线段DE的长?”结果会有变化吗?如果有,直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程(  )
A.20000(1+x)2=80000B.20000(1+x)+20000(1+x)2=80000
C.20000(1+x2)=80000D.20000+20000(1+x)+20000(1+x)2=80000

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.我们知道,平方数的开平方运算可以直接求得,如$\sqrt{4}$等,有些数则不能直接求得,如$\sqrt{5}$,但可以通过计算器求得.还有一种方法可以通过一组数的内在联系,运用规律求得.请你观察下表:
a0.04440040000
$\sqrt{a}$x2yz
(1)表格中的三个值分别为:x=0.2;y=20;z=200;
(2)用公式表示这一规律:当a=4×100n(n为整数)时,$\sqrt{a}$=2×10n
(3)利用这一规律,解决下面的问题:
  已知$\sqrt{5.56}$≈2.358,则①$\sqrt{0.0556}$≈0.2358;②$\sqrt{556}$≈23.58.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.当x取x≥2 时,使得$\sqrt{x-2}$有意义.

查看答案和解析>>

同步练习册答案