精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数yx22x3

(1)求函数图象的顶点坐标,与坐标轴的交点坐标,并画出函数的大致图象;

(2)根据图象直接回答:当y0时,求x的取值范围;当y>﹣3时,求x的取值范围.

【答案】1)顶点坐标为(14),与x轴的交点坐标为(10)(30),与y轴的交点坐标为(0,﹣3),作图见解析;(2)当﹣1x3时,y0;当x0x1时,y>﹣3

【解析】

(1)利用配方法得到y(x1)24,从而得到抛物线的顶点坐标,再计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过解方程x22x30得抛物线与x轴的交点坐标,然后利用描点法画函数图象;

(2)结合函数图象,当y0时,写出函数图象在x轴下方所对应的自变量的范围;当y>﹣3时,写出函数值大于﹣3对应的自变量的范围.

解:

(1)yx22x3(x1)24

∴抛物线的顶点坐标为(14)

x0时,yx22x3=﹣3,则抛物线与y轴的交点坐标为(0,﹣3)

y0时,x22x30,解得x1=﹣1x23,则抛物线与x轴的交点坐标为(10)(30)

如图,

(2)由图可知,当﹣1x3时,y0

x0x1时,y>﹣3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DCAB的延长线相交于点PADPC延长线垂直,垂足为点DCE平分∠ACB,交AB于点F,交⊙O于点E

1)求证:PC与⊙O相切;

2)求证:PCPF

3)若AC8tanABC,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.

(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;

(2)求小明的综合得分是多少?

(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A点,D点分别在x轴、y轴上,对角线BDx轴,反比例函数的图象经过矩形对角线的交点E,若点A(20),D(04),则k的值为( )

A.16B.20C.32D.40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低1元,每天可多售出200斤.为了保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是    (用含x的代数式表示)

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是(  )

用水量x(吨)

3

4

5

6

7

频数

1

2

5

4﹣x

x

A. 平均数、中位数 B. 众数、中位数 C. 平均数、方差 D. 众数、方差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,边的中线,,连结,点在射线上(与不重合)

1)如果

①如图1   

②如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想之间的数量关系,并证明你的结论;

2)如图3,若点在线段 的延长线上,且span>,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出三者的数量关系(不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y1=x+mx轴、y轴分别交于点AB,与双曲线x<0)分别交于点C-12Da1).

1)分别求出直线及双曲线的解析式;

2)利用图象直接写出,当x在什么范围内取值时,y1>y2

(3)请把直线y1<y2时的部分用黑色笔描粗一些.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一种火爆的网红电子产品,每件产品成本元、工厂将该产品进行网络批发,批发单价(元)与一次性批发量(件)(为正整数)之间满足如图所示的函数关系.

直接写出之间所满足的函数关系式,并写出自变量的取值范围;

若一次性批发量不超过件,当批发量为多少件时,工厂获利最大?最大利润是多少?

查看答案和解析>>

同步练习册答案