精英家教网 > 初中数学 > 题目详情
相传,古埃及人用13个等距的结把一根绳子分成等长的12段.并把它摆成△ABC的形状,如图所示,工人们按这种造型在金字塔等建筑的拐角作出直角,试问这种“张绳法”能否得到一个直角三角形呢?请同学们动手试一试,并说明理由.
考点:勾股定理的逆定理
专题:应用题
分析:根据勾股定理的逆定理进行证明.只要三角形的两条边的平方和等于斜边的平方,该三角形是直角三角形.
解答:解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,
则(3m)2+(4m)2=(5m)2
故这种“张绳法”能得到一个直角三角形.
点评:考查了勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC.
(1)尺规作图:AB的垂直平分线,与AB交于D点,与AC交于E点.(保留作图痕迹,不写作法)
(2)连接BE,若△BCE的周长为8,BC=3,则BD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,
AO
OD
=
2
3
,则△AOB的周长与△DOC的周长比是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,BC=80mm,AH=60mm,D在AB边上,E在AC上,DE∥BC以DE为边在△ABC内作矩形DEFG,设DE=x,DG=y.
(1)求y与x的函数关系式;
(2)当x取何值时,矩形DEFG的面积是1200mm2
(3)当x取何值时,矩形DEFG的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为4,点P,Q,R,S分别在AB,BC,CD,DA上,且BQ=2AP,CR=3AP,DS=4AP.
(1)若∠SPQ=90°,求AP的长;
(2)当AP为何值时,四边形PQRS的面积y最小并求此最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)操作发现:如图①,Rt△ABC中,AC=BC,∠C=90°,点D是CB的中点,将△ACD沿AD折叠后得到△AED△,过点B作BF∥AC交AE的延长线于点F,容易发现线段BF和EF的关系是
 

(2)类比思考:若将图①中“AC=BC”改成“AC≠BC”,其他条件不变,如图②,那么(1)中的发现是否仍然成立?请说明理由.
(3)拓广探究:若将图①中“Rt△ABC中,AC=BC,∠C=90°”,改为“在△ABC中”,其他条件不变,如图③,那么(1)中的发现是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠A=55°,b=20cm,c=30cm,求S△ABC(参考数据:sin55°≈0.8192,结果精确到0.1cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ACB与△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在BC上,连接AE,BD.
(1)求证:AE=BD;
(2)请直接写出AE与BD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:(
3
x-2
+
2
x+2
)÷
5x2+2x
x2-4
,其中x=
2
•cot60°.

查看答案和解析>>

同步练习册答案