【题目】规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为P是二次函数的图象上在第一象限内的任意一点,PQ垂直直线于点Q,则四边形PMNQ是广义菱形.其中正确的是_____.(填序号)
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.
(1)若直线DA交BC′于点F,求证:EF=BF;
(2)当AE=时,求证:△AC′D′是等腰三角形;
(3)在点E的运动过程中,求△AC′D′面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2019个正方形的面积是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.
(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;
(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题:
(1)本次共调查了 名家长;扇形统计图中“很赞同”所对应的圆心角是 度.已知该校共有1600名家长,则“不赞同”的家长约有 名;请补全条形统计图;
(2)从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 AB,CD是的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作,垂足为点F,直线BF交直线CD于点G.
(1)如图1当点E在外时,连接,求证BE平分∠GBC;
(2)如图2当点E在内时,连接AC,AG,求证:AC=AG
(3)在(2)条件下,连接BO,若BO平分,求线段EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.
(1)求证:四边形BECD是矩形;
(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com