精英家教网 > 初中数学 > 题目详情

【题目】某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题:

1)本次共调查了   名家长;扇形统计图中“很赞同”所对应的圆心角是   度.已知该校共有1600名家长,则“不赞同”的家长约有   名;请补全条形统计图;

2)从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“11女”的概率.

【答案】120036720,见解析;(2)列表法见解析,

【解析】

1)从两个统计图可得,赞同的有50名,占调查总人数的25%,可求出调查总人数;进而求出无所谓很赞同的人数,很赞同的圆心角度数为360°,样本估计总体,样本中不赞同的占,估计总体1600户的不赞同的人数;即可补全条形统计图:

2)用列表法或树状图法列举出所有等可能出现的情况,从中找出11女的情况数,进而求出概率.

解:(1)总人数:50÷25%200名,无所谓人数:200×20%40名,很赞同人数:20090504020名,

很赞同对应圆心角:360°×36°

1600×720名,

故答案为:20036720,补全条形统计图如图所示:

2)用列表法表示所有可能出现的情况如下:

共有20种可能出现的情况,正确“11的有12种,

P11女)

答:选中“11的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2020年春节期间,昆明市政府为了进一步做好新冠肺炎疫情的防控工作,在各个高速公路出入口均设立检测点,对出入人员进行登记和体温检测,下图为一高速路口检测点的指示牌,已知立杆的高度是,从侧面点处测得指示牌点和点的仰角分别是,求的长.(结果精确到.参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C1yax22ax3aa≠0)和点A0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B

1)求点B的坐标;

2)求抛物线C1的对称轴;

3)把抛物线C1沿x轴翻折,得到一条新抛物线C2,抛物线C2与抛物线C1组成的图象记为G,若图象G与线段AB恰有一个交点时,结合图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:

(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);

(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,求C点坐标和△ABC的周长(结果保留根号);

(3)画出△ABC以点C为旋转中心,旋转180°后的△DEC,连结AE和BD,试说明四边形ABDE是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,连接上一点,使得连接于点,作的延长线于点

1)求证:

2)若的长.

3)在(2)的条件下,将沿着对折得到的对应点为点,连接试求的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人在相同条件下完成了10次射击训练,两人的成绩如图所示。

根据以上信息,整理分析数据如下:

平均成绩/

中位数/

方差/

______

7

1.2

7

______

______

1)完成表格;

2)根据训练成绩,你认为选派哪一名队员参赛更好?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张半径为的圆形纸片,点为圆心,将该圆形纸片沿直线折叠,直线两点.

1)若折叠后的圆弧恰好经过点,利用直尺和圆规在图中作出满足条件的一条直线(不写作法,保留作图痕迹),并求此时线段的长度.

2)已知一点,

①若折叠后的圆弧经过点,则线段长度的取值范围是________

②若折叠后的圆弧与直线相切于点,则线段的长度为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜市场为指导某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供的信息如下:

信息1:售价和月份满足一次函数关系,如下表所示.

月份

3

6

售价

5

3

信息2:成本和月份满足二次函数关系,并且知道该种蔬菜在6月成本达到最低为1/千克,9月成本为4/千克.

根据以上信息回答下列问题:

1)在7月,这种蔬菜的成本是多少元每千克?

2)在过去的一年中,某商家平均每天卖出该种蔬菜,则哪个月的利润最大,最大利润为多少?(一个月按30天计算)

查看答案和解析>>

同步练习册答案