分析 根据已知条件证得△ABE≌△ACD(SAS),由全等三角形的性质得到∠1=∠2,由∠3+∠2=60°,得到∠1+∠3=60°=∠AGE=∠BGD,由对称的性质得到AG=GM=3,∠BGM=∠BGA=180°-60°=120°,于是得到∠HGM=120°-60°=60°,过H作HN⊥GM于H,由勾股定理得到HM=$\sqrt{{2}^{2}+(\sqrt{3})^{2}}$=$\sqrt{7}$,由BF⊥DH,得到BD=BH求得HM=CD=AE=$\sqrt{7}$,过E作EQ⊥AG于Q,设GE=2a,解直角三角形得到GQ=a,QE=$\sqrt{3}$a,根据勾股定理列方程即可得到结论.
解答
解:在△ABE和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABC=∠C}\\{AE=CD}\end{array}\right.$,
∴△ABE≌△ACD(SAS),
∴∠1=∠CAD,
∵∠BGH=∠1+∠BAG=∠BAG+∠CAD=60°,
∵∠1=∠2,
∴∠3+∠2=30°,
∴∠AGE=∠BGD=60°,
∵△ABG和△MBG关于直线BG对称
∴AG=GM=3,∠BGM=∠BGA=180°-60°=120°,
∴∠HGM=120°-60°=60°,
过H作HN⊥GM于H,
∵GH=2,
∴$GN=1,NM=3-1=2,HN=\sqrt{3}$,
∴HM=$\sqrt{{2}^{2}+(\sqrt{3})^{2}}$=$\sqrt{7}$,
∵∠1=∠2,∠2+∠3=90°-∠BGF=30°,
∴∠3=∠4,
∵BF⊥DH,
∴BD=BH,
∵BC=AB=BM,
∴HM=CD=AE=$\sqrt{7}$,
过E作EQ⊥AG于Q,
设GE=2a,
∵∠QGE=60°,
∴GQ=a,QE=$\sqrt{3}$a,
∴($\sqrt{7}$)2=(3-a)2+($\sqrt{3}$a)2,
∴a=$\frac{1}{2}$,a=1(不和题意,舍去),
∴GE=2a=1.
故答案为:1.
点评 本题考查了全等三角形的判定和性质,轴对称的性质,等边三角形的性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com