【题目】下面说法正确的是( ).
A. 检测一批进口食品的质量应采用全面调查
B. 从万名考生的成绩中抽取名考生的成绩作为样本,样本容量是万
C. 反应你本学年数学成绩的变化情况宜采用扇形统计图
D. 一组数据的样本容量是,最大值是,最小值是,取组距为,可分为组
科目:初中数学 来源: 题型:
【题目】我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)中,,将沿翻折至,连结.
结论1:与重叠部分的图形是等腰三角形;
结论2:.
试证明以上结论.
(应用与探究)
在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)
(1)求小明此时与地面的垂直距离CD的值;
(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,同学们探究了角平分线的作法.下面给出三个同学的作法:
小红的作法
如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再过点O作MN的垂线,垂足为P,则射线OP便是∠AOB的平分线.
小明的作法 如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线. |
小刚的作法 如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,则射线OP便是∠AOB的平分线. |
请根据以上情境,解决下列问题
(1)小红的作法依据是 .
(2)为说明小明作法是正确的,请帮助他完成证明过程.
证明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依据)
(3)小刚的作法正确吗?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数的图像相交于、两点.
(1)求出两函数解析式;
(2)根据图像回答:当为何值时,一次函数的函数值大于反比例函数的函数值?
(3)连接、,试求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,
(1)请直接写出、两点的坐标;
(2)若把向上平移个单位,再向右平移个单位得,请在图中画出,并写出点的坐标;
(3)求的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2017个正方形的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交与点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3.请探究以下问题:
(1)填空:a1= ,b1= ;
(2)求出C2与C3的解析式;
(3)按上述类似方法,可得到抛物线Cn:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1).
①请用含n的代数式直接表示出Cn的解析式;
②当x取任意不为0的实数时,试比较y2015与y2016的函数值的大小并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com