【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论有( )
A.2个B.3个C.4个D.5个
【答案】B
【解析】
(1)正确.根据对称轴公式计算即可.
(2)错误,利用x=﹣3时,y<0,即可判断.
(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.
(4)错误.利用函数图象即可判断.
(5)正确.利用二次函数与二次不等式关系即可解决问题.
解:(1)正确.∵﹣=2,
∴4a+b=0.故正确.
(2)错误.∵x=﹣3时,y<0,
∴9a﹣3b+c<0,
∴9a+c<3b,故(2)错误.
(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),
∴解得,
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵a<0,
∴8a+7b+2c>0,故(3)正确.
(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),
∵﹣2=,2﹣(﹣)=,
∴<
∴点C离对称轴的距离近,
∴y3>y2,
∵a<0,﹣3<﹣<2,
∴y1<y2
∴y1<y2<y3,故(4)错误.
(5)正确.∵a<0,
∴(x+1)(x﹣5)=>0,
即(x+1)(x﹣5)>0,
故x<﹣1或x>5,故(5)正确.
∴正确的有三个,
故选:B.
科目:初中数学 来源: 题型:
【题目】如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A=90°,DC=AD,∠B是锐角,cotB=,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示,AB是⊙O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF于点AF.
(1)求证:DE与⊙O相切:
(2)若AE=8,AB=10,求DE长;
(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AFEF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C为⊙O上一点,作CE⊥AB干点E,BE=2OE,延长AB至点D,使得BD=AB,P是弧AB(异于A,B)上一个动点,连接AC、PE.
(1)若AO=3,求AC的长度;
(2)求证:CD是⊙O的切线;
(3)点P在运动的过程中是否存在常数k,使得PE=k·PD,如果存在,求k的值,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.
(1)当每个纪念品定价为3.5元时,商店每天能卖出________件;
(2)如果商店要实现每天800元的销售利润,那该如何定价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的二次函数y=x2+2kx+k﹣1,下列说法正确的是( )
A.对任意实数k,函数图象与x轴都没有交点
B.对任意实数k,函数图象没有唯一的定点
C.对任意实数k,函数图象的顶点在抛物线y=﹣x2﹣x﹣1上运动
D.对任意实数k,当x≥﹣k﹣1时,函数y的值都随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知M、N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函 数的图象上,设点M的坐标为(a,b),则二次函数( )
A.有最小值,且最小值是B.有最大值,且最大值是
C.有最大值,且最大值是D.有最小值,且最小值是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD为菱形的是( )
A.∠ABD=∠BDCB.∠ABD=∠BACC.∠ABD=∠CBDD.∠ABD=∠BCA
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com