【题目】如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是_____.
【答案】.
【解析】
作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图像上的点的坐标特征得到A点(2,0),B点(0,2),易得△AOB为等腰直角三角形,则AB=2,所以,EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1,设F点坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),根据反比例函数图象上的点的坐标特征得到t(﹣t+2)=(t+1)(﹣t+1),解得t=,则E点坐标为(,),继而可求得k的值.
如图,作FH⊥x轴,EC⊥y轴,FH与EC交于D,
由直线y=﹣x+2可知A点坐标为(2,0),B点坐标为(0,2),OA=OB=2,
∴△AOB为等腰直角三角形,
∴AB=2,
∴EF=AB=,
∴△DEF为等腰直角三角形,
∴FD=DE=EF=1,
设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),
∴t(﹣t+2)=(t+1)(﹣t+1),解得t=,
∴E点坐标为(,),
∴k=×=.
故答案为.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣(m﹣1)x﹣m,其中m>0,它的图象与x轴从左到右交于R和Q两点,与y轴交于点P,点O是坐标原点.下列判断中不正确的是( )
A.方程x2﹣(m﹣1)x﹣m=0一定有两个不相等的实数根B.点R的坐标一定是(﹣1,0)
C.△POQ是等腰直角三角形D.该二次函数图象的对称轴在直线x=﹣1的左側
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.
(1)求A,B,C三点坐标;
(2)如图1,点D为AC中点,点E在线段BD上,且BE=2DE,连接CE并延长交抛物线于点M,求点M坐标;
(3)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.
(1)本次调查的学生人数为 人;
(2)补全频数分布直方图;
(3)根据图形提供的信息判断,下列结论正确的是 (只填所有正确结论的代号);
A.由图(1)知,学生完成作业所用时间的中位数在第三组内 |
B.由图(1)知,学生完成作业所用时间的众数在第三组内 |
C.图(2)中,90~120数据组所在扇形的圆心角为108° |
D.图(1)中,落在第五组内数据的频率为0.15 |
(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中A(0,2),点B(﹣3,0).△AOB绕点O逆时针旋转30°得到△A1OB1.
(1)直接写出点B1的坐标;
(2)点C(2,0),连接CA1交OA于点D,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.
理解:
⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);
⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;
运用:
⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com