精英家教网 > 初中数学 > 题目详情

【题目】在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是(  )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小

【答案】C
【解析】解:A、 = =8, = =8,故此选项正确;
B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;
C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;
∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;
D、∵ = ×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]= ×2=0.4, = ×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]= ×8=1.6,∴ ,故D正确;
故选:C.
分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.本题主要考查平均数、众数、中位数及方差,熟练掌握这些统计量的意义及计算公式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图①,若∠AOC=30°,求∠DOE的度数;

(2)在图①中,若∠AOC,直接写出∠DOE的度数(用含的代数式表示);

(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若一个三位数的十位上数字为7,且从4、5、6、8中随机选取两数,与7组成“中高数”,那么组成“中高数”的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.

(1)若两人同时出发,相向而行,则经过几小时两人相遇?

(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙追上甲?

(3)若两人同时出发,相向而行,则几小时后两人相距10千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某检修小组乘汽车从地出发,在东西走向的马路上检修线路,如果规定向东行驶为正,一天中七个检修点的行驶记录如下(单位:):

-4,+7,-9,+8,+6,-4,-3.

(1)收工时汽车共行驶了多少千米?

(2)收工时,汽车距地多远?

(3)在检修时,第几个检修点离地最远,最远距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.

实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)

(1)作∠DAC的平分线AM

(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AECF

探究与猜想:若∠BAE=36°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.

(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为   °,CON的度数为   °;

(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为   °;

(3)请从下列(A),(B)两题中任选一题作答.

我选择:   

A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为   °;DOC与∠BON的数量关系是∠DOC   BON(填“>”、“=”“<”);

B)如图4,MNABON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+AON的度数为   °;AOMCON的度数为   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读后解决问题:

“15.3分式方程一课的学习中,老师提出这样的一个问题:如果关于x的分式方程的解为正数,那么a的取值范围是什么?

经过交流后,形成下面两种不同的答案:

小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.

因为解是正数,可得a﹣2>0,所以a>2.

小强说:本题还要必须a≠3,所以a取值范围是a>2a≠3.

(1)小明与小强谁说的对,为什么?

(2)关于x的方程有整数解,求整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣14+ sin60°+( 2﹣( 0

查看答案和解析>>

同步练习册答案