【题目】阅读后解决问题:
在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x的分式方程的解为正数,那么a的取值范围是什么?
经过交流后,形成下面两种不同的答案:
小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.
因为解是正数,可得a﹣2>0,所以a>2.
小强说:本题还要必须a≠3,所以a取值范围是a>2且a≠3.
(1)小明与小强谁说的对,为什么?
(2)关于x的方程有整数解,求整数m的值.
【答案】(1)小强的说法对,理由见解析;(2)m=3,4,0.
【解析】
(1)先根据解分式方程的步骤和解法解分式方程可得x=a﹣2,根据分式方程有解和解是正数可得:x>0且x≠1, 即a﹣2>0, a﹣2≠1,即可求解,
(2) 先根据解分式方程的步骤和解法解分式方程可得(m﹣2)x=﹣2, 当m≠2时,
解得:x=﹣,根据分式方程有整数解可得: m﹣2=±1,m﹣2=±2,继而求m的值.
解:(1)小强的说法对,理由如下:
解这个关于x的分式方程,得到方程的解为x=a﹣2,
因为解是正数,可得a﹣2>0,即a>2,
同时a﹣2≠1,即a≠3,
则a的范围是a>2且a≠3,
(2)去分母得:mx﹣1﹣1=2x﹣4,
整理得:(m﹣2)x=﹣2,
当m≠2时,解得: x=﹣,
由方程有整数解,得到m﹣2=±1,m﹣2=±2,
解得:m=3,4,0.
科目:初中数学 来源: 题型:
【题目】暑假期间小王和小吴两家6个人一起外出旅游,乘坐两辆出租车前往飞机场,在离机场11千米处一辆车出了故障,不能行驶.此时离机场停止办理登机手续时间还有半个小时,唯一可以利用的交通工具只有一辆出租车,连同司机在内限乘5人,车速60千米/时.
(1)如果2人在原地等候,这辆车分两批接送,6人都能及时到达机场吗?
(2)如果在汽车送第一批人的同时,余下2人以6千米/时的速度向前步行,汽车在将第一批人送达后即返回接第二批人,他们能及时到达机场吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
则下列说法中错误的是( )
A.甲、乙得分的平均数都是8
B.甲得分的众数是8,乙得分的众数是9
C.甲得分的中位数是9,乙得分的中位数是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产了台数相同A型、B型两种单价不同的计算机,B型机的单价比A型机的便宜0.24万元,已知A型机总价值120万元,B型计算机总价值为80万元,求A型、B型两种计算机的单价,设A型计算机的单价是x万元,可列方程_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.
求证:(1)△ABC≌△EDF;
(2)AB∥DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A.不变
B.增大
C.减小
D.先变大再变小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BE⊥AC于E,CF⊥AB于F,AE=AF,BE与CF交于点D,则:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是( )
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某月的日历表,在此日历表上可以用一个“十”字圈出5个数(如3,9,10,11,17).照此方法,若圈出的5个数中,最大数与最小数的和为46,则这5个数的和为( )
A. 205 B. 115 C. 85 D. 65
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)()×(﹣36); (2)[2﹣5×(﹣)2]÷(﹣);
(3)1×﹣(﹣ )×2+(﹣ )÷1 ; (4)﹣14﹣[1﹣(1﹣0.5× )×6]
(5); (6)-22+(1-×0.2)÷(-2)3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com