精英家教网 > 初中数学 > 题目详情
8.掷一枚质地均匀的正方体骰子(六个面上分别刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为$\frac{1}{3}$.

分析 向上一面出现的点数大于2且小于5的共2种情况.

解答 解:掷一枚均匀的骰子时,有6种情况,出现点数大于2且小于5的情况有2种,
故其概率是$\frac{2}{6}$=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.

点评 此题主要考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.
(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;
(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).
(1)当点C落在边EF上时,x=15cm;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)=$\frac{2}{x}$(x>0)是减函数.
证明:假设x1<x2,且x1>0,x2>0
f(x1)-f(x2)=$\frac{2}{{x}_{1}}$-$\frac{2}{{x}_{2}}$=$\frac{2{x}_{2}-2{x}_{1}}{{x}_{1}{x}_{2}}$=$\frac{2({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$
∵x1<x2,且x1>0,x2>0
∴x2-x1>0,x1x2>0
∴$\frac{2({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$>0,即f(x1)-f(x2)>0
∴f(x1)>f(x2
∴函数f(x)=$\frac{2}{x}$(x>0)是减函数.
根据以上材料,解答下面的问题:
(1)函数f(x)=$\frac{1}{{x}^{2}}$(x>0),f(1)=$\frac{1}{{1}^{2}}$=1,f(2)=$\frac{1}{{2}^{2}}$=$\frac{1}{4}$.
计算:f(3)=$\frac{1}{9}$,f(4)=$\frac{1}{16}$,猜想f(x)=$\frac{1}{{x}^{2}}$(x>0)是减函数(填“增”或“减”);
(2)请仿照材料中的例题证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,△ABC的面积等于6,边AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,点P在直线AD上,则线段BP的长不可能是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AB是⊙的直径,C是$\widehat{AB}$的中点,BD⊥AB交AC的延长线于点D,E是OB的中点,CE的延长线交DB于F,AF交⊙O于H,连接BH.
(1)求证:AC=CD;
(2)连接CH,求∠AHC的长;
(3)若OB=2,①求BH的长.②求CH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若a+b=10,ab=48,那么a2+b2=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.四边形ABCD中,∠A=145°,∠D=75°.
(1)如图1,若∠B=∠C,试求出∠C的度数;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;
(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.
②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.

查看答案和解析>>

同步练习册答案