【题目】已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上以每秒1个单位的速度由C向B运动。
(1) 求梯形ODPC的面积S与时间t的函数关系式。
(2) t为何值时,四边形PODB是平行四边形?
(3) 在线段PB上是否存在一点Q,使得ODQP为菱形。若存在求t值,若不存在,说明理由。
(4) 当△OPD为等腰三角形时,求点P的坐标。
【答案】(1)由题意仪,根据梯形的面积公式,得
s==2t+10
(2)∵四边形PODB是平行四边形,
∴PB=OD=5,
∴PC=5,
∴t=5
(3)∵ODQP为菱形,
∴OD=OP=PQ=5,
∴在Rt△OPC中,由勾股定理得:
PC=3
∴t=3
(4)当P1O=OD=5时,由勾股定理可以求得P1C=3,
P2O=P2D时,作P2E⊥OA,
∴OE=ED=2.5;
当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,
∴P3C=2;
当P4D=OD=5时,作P4G⊥OA,由勾股定理,得DG=3,
∴OG=8.
∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4)
【解析】(1)根据梯形的面积公式就可以表示出S与t的函数关系式.
(2)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值.
(3)要使ODQP为菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值.
(4)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理P1C,OE,P3F,DG的值,就可以求出P的坐标.
科目:初中数学 来源: 题型:
【题目】如图,AB∥DE,求证:∠D+∠BCD-∠B=180°.
证明:过点C作CF∥AB.
∵AB∥CF(已知),
∴∠B=________(____________________).
∵AB∥DE,CF∥AB(已知),
∴CF∥DE(__________________________________).
∴∠2+________=180°(________________________).
∵∠2=∠BCD-________(已知),
∴∠D+∠BCD-∠B=180°(等量代换).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从二次函数y=ax2+bx+c的图象(如图)中观察
得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.
你认为其中正确的信息是_________________.(只填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC,分别以AB、AC边作图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,下列结论①△AEC≌△ABF,②EC=FB,③EC⊥FB,④MA平分∠EMF中,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=k1x+b与双曲线y=相交于点A(1,2),B(m,-1)两点.
(1)分别求直线和双曲线的表达式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com