精英家教网 > 初中数学 > 题目详情

【题目】小明家的脚踏式垃圾桶如图,当脚踩踏板时垃圾桶盖打开最大张角∠ABC =45°,为节省家里空间小明 想把垃圾桶放到桌下,经测量桌子下沿离地面高 55cm,垃圾桶高 BD=33.1cm,桶盖直径 BC=28.2cm,问垃圾桶放到桌下踩踏板时,桶盖完全打开有没有碰到桌子下沿?( 1.41 )

【答案】桶盖完全打开时没有碰到碰到子下沿

【解析】分析过点CCG⊥DEABH,根据等腰直角三角形的性质和勾股定理结合矩形的性质解直角三角形即可求解.

详解:过点CCG⊥DEABH

由题意得:四边形ABDE是矩形

∴AB∥DE

∴∠CHB=90° CH=BD=33.1

Rt△CBH中, sin∠CBH=

∴CH=BC·sin∠CBH=28.2×≈20

∴CG=CH+HG=33.1+20=53.1﹤55

答:桶盖完全打开时没有碰到碰到子下沿。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A-30),与y轴交点为B,且与正比例函数的图象的交于点Cm4).

1)求m的值及一次函数y=kx+b的表达式;

2)若点Py轴上一点,且BPC的面积为6,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.

(1)求证:△AEF≌△BEC;

(2)判断四边形BCFD是何特殊四边形,并说出理由;

(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:

(1)第一版=____%,“第四版”对应扇形的圆心角为________°;

(2)请你补全条形统计图;

(3)若该校有1200名学生,请你估计全校学生中最喜欢“第三版”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD与四边形CEFG是两个边长分别为ab的正方形.

1)用含ab的代数式表示三角形BGF的面积;(2)当时,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中两条直线为l1:y=–3x+3,l2:y=–3x+9,直线l1x轴于点A,交y轴于点B,直线l2x轴于点D,过点Bx轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+cE、B、C三点,下列判断中:

①a–b+c=0;

②2a+b+c=5;

③抛物线关于直线x=1对称;

④抛物线过点(b,c);

⑤S四边形ABCD=5;

其中正确的个数有( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上.向内放入两个半径为5 cm的钢球,测得上面一个钢球的最高点到底面的距离DC16 cm(钢管的轴截面如图所示),则钢管的内径AD的长为_______cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(-1,0),B(1,0),Cy轴正半轴上一点,点D为第三象限一动点,CDABF,且∠ADB=2BAC

(1)求证:∠ADB与∠ACB互补;

(2)求证:CD平分∠ADB

(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ACB=90°AC=8cosA=DAB边的中点,EAC边上一点,联结DE,过点DDFDEBC边于点F,联结EF

1)如图1,当DEAC时,求EF的长;

2)如图2,当点EAC边上移动时,∠DFE的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE的正切值;

3)如图3,联结CDEF于点Q,当CQF是等腰三角形时,请直接写出BF的长.

查看答案和解析>>

同步练习册答案