精英家教网 > 初中数学 > 题目详情

【题目】一根长40cm的金属棒,欲将其截成x7cm长的小段和y9cm长的小段,剩余部分作废料处理.若使废料最少,则正整数x应为_

【答案】3

【解析】

根据金属棒的长度是40cm,则可以得到,再根据xy都是正整数,即可求得所有可能的结果,分别计算出剩料的长度,即可得到答案.

根据题意得:

y是正整数,

y的值可以是1234

y1时,,则x4,此时,所剩的废料是:4094×73cm

y2时,,则x3,此时,所剩的废料是:402×93×71cm

y3时,,则x1,此时,所剩的废料是:403×976cm

y4时,,则x0(舍去),

最少的是:x3y2

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,tanBBC边上的高AD6AC3,则BC长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABCD沿EF对折,使点A落在点C处,若∠A60°AD4AB8,则AE的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P上一动点,连接AP,作∠APC=45°,交弦AB于点CAB=6cm

小元根据学习函数的经验,分别对线段APPCAC的长度进行了测量.

下面是小元的探究过程,请补充完整:

1)下表是点P上的不同位置,画图、测量,得到线段APPCAC长度的几组值,如下表:

AP/cm

0

1.00

2.00

3.00

4.00

5.00

6.00

PC/cm

0

1.21

2.09

2.69

m

2.82

0

AC/cm

0

0.87

1.57

2.20

2.83

3.61

6.00

①经测量m的值是 (保留一位小数).

②在APPCAC的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;

2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;

3)结合函数图象,解决问题:当ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等边△ABC绕点C顺时针旋转90得到△DEC,∠ACD的平分线CFDE于点F,连接AE,AF.

1)求∠CEA度数;

2)求证AFCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司根据市场需求销售AB两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.

1)求每台A型、B型净水器的进价各是多少元?

2)该公司计划用不超过9.8万元购进AB两种型号的净水器共50台,其中A型、B型净水器每台售价分别为2500元、2180元,设A型净水器为x台.

x的取值范围.

若公司决定从销售A型净水器的利润中每台捐献a100a150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两个可以自由转动的质地均匀转盘都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,如图所示,转动转盘,两个转盘停止后观察并记录两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).

1)用列表法或画树形图法求出同时转动两个转盘一次的所有可能结果;

2)同时转动两个转盘一次,求记录的两个数字之和为7”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点M为二次函数yx2+2bx+3c图象的顶点,一次函数ykx3k0)分别交x轴,y轴于点AB

1)若b1c1,判断顶点M是否在直线y2x+1上,并说明理由;

2)若该二次函数图象经过点C1,﹣4),也经过点AB,且满足kx3x2+2bx+3c,求该一次函数解析式,并直接写出自变量x的取值范围;

3)设点P坐标为(mn)在二次函数yx2+2bx+3c上,当﹣2≤m≤2时,b24≤n≤2b+4,试问:当b≥2b≤2时,对于该二次函数中任意的自变量x,函数值y是否始终大于﹣40?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).

(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)

查看答案和解析>>

同步练习册答案