【题目】已知,点M为二次函数y=x2+2bx+3c图象的顶点,一次函数y=kx﹣3(k>0)分别交x轴,y轴于点A,B.
(1)若b=1,c=1,判断顶点M是否在直线y=2x+1上,并说明理由;
(2)若该二次函数图象经过点C(1,﹣4),也经过点A,B,且满足kx﹣3<x2+2bx+3c,求该一次函数解析式,并直接写出自变量x的取值范围;
(3)设点P坐标为(m,n)在二次函数y=x2+2bx+3c上,当﹣2≤m≤2时,b﹣24≤n≤2b+4,试问:当b≥2或b≤﹣2时,对于该二次函数中任意的自变量x,函数值y是否始终大于﹣40?请说明理由.
【答案】(1)M不在直线y=2x+1上,见解析;(2)y=x2﹣2x﹣3,x>3或x<0;(3)当b≥2或b≤﹣2时,对于该二次函数中任意的自变量x,函数值y始终大于﹣40
【解析】
(1)b=1,c=1时,y=x2+2x+3,求出M(﹣1,2),将点M(﹣1,2)代入y=2x+1验证是否满足即可;
(2)由题可知B(0,﹣3),C(1,﹣4),代入y=x2+2bx+3c得到b=﹣1,c=﹣1,求出A(,0),再将点A代入二次函数解析式得到﹣﹣3=0,求得k=1;
(3)函数对称轴为x=﹣b,①当﹣b≤﹣2时,即b≥2,此时b﹣24=4﹣4b+3c,则5b﹣3c=28,2b+4=4+4b+3c,则2b+3c=0,求得y=x2+8x﹣8=(x+4)2﹣24≥﹣24>﹣40;②当﹣b≥2时,即b≤﹣2,此时b﹣24=4+4b+3c,则3b+3c=﹣28,2b+4=4﹣4b+3c,则6b﹣3c=0,求得y=x2﹣x﹣=(x﹣)2﹣≥﹣>﹣40.
解:(1)b=1,c=1时,y=x2+2x+3=(x+1)2+2,
∴M(﹣1,2),
将点M(﹣1,2)代入y=2x+1,则﹣1≠2,
∴M不在在直线y=2x+1上;
(2)∵B过一次函数y=kx-3且交于y轴,令x=0,解得y=-3,故B(0,-3).
∵B(0,﹣3),C(1,﹣4),过二次函数y=x2+2bx+3c.
代入得到:,解得:b=﹣1,c=﹣1,
∴y=x2﹣2x﹣3,
∵A过y=kx-3并交x轴,令y=0,解得x=,故A(,0),
∴﹣﹣3=0,
∴k=1或k=﹣3,
∵k>0,
∴k=1,
∴y=x﹣3,
∵x﹣3<x2﹣2x﹣3,
∴x>3或x<0;
(3)函数对称轴为x=﹣b,
①当﹣b≤﹣2时,即b≥2,
此时b﹣24=4﹣4b+3c,则5b﹣3c=28,
2b+4=4+4b+3c,则2b+3c=0,
∴b=4,c=﹣,
∴y=x2+8x﹣8=(x+4)2﹣24≥﹣24>﹣40;
②当﹣b≥2时,即b≤﹣2,此时
b﹣24=4+4b+3c,则3b+3c=﹣28,
2b+4=4﹣4b+3c,则6b﹣3c=0,
∴b=﹣,c=﹣,
∴y=x2﹣x﹣=(x﹣)2﹣≥﹣>﹣40;
∴当b≥2或b≤﹣2时,对于该二次函数中任意的自变量x,函数值y始终大于﹣40.
科目:初中数学 来源: 题型:
【题目】在锐角△ABC中,边BC长为18,高AD长为12
(1)如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;
(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于点C(0,﹣3).
(1)求二次函数解析式;
(2)若点Q为抛物线上一点,且S△ABQ=S△ACQ,求点Q的坐标;
(3)若直线l:y=mx+n与抛物线有两个交点M,N(M在N的左边),P为抛物线上一动点(不与M,N重合).过P作PH平行于y轴交直线l于点H,若=5,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交轴、两点(在的左侧),且,,与轴交于,抛物线的顶点坐标为.
(1)求、两点的坐标;
(2)求抛物线的解析式;
(3)过点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个直径为2m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC.
(1)求图中阴影部分的面积;
(2)若将扇形ABC围成一个圆锥,则该圆锥的底面半径最大是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.
(1)求甲、乙商品的出厂单价分别是多少元?
(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该经销商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α
(0°<α<60°且α≠30°).
(1)当0°<α<30°时,
①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);
②探究线段CE,AC,CQ之间的数量关系,并加以证明;
(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com