【题目】如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α
(0°<α<60°且α≠30°).
(1)当0°<α<30°时,
①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);
②探究线段CE,AC,CQ之间的数量关系,并加以证明;
(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.
【答案】(1)①;②CE+AC=;(2)CE-AC=,理由见解析
【解析】(1) ①根据旋转的性质及等边三角形的对称性可得QA=QB,再由QB=QE可得;②延长CA到点F,使得AF=CE,连接QF,作QH⊥AC于点H,
(1)当0°<α<30°时,由∠BQE=60°+2α可得∠QEC=120°+α,再利用△QAF≌△QEC可得QF=QC,由等腰三角形三线合一的性质可得∠ACQ =30°,得到△QCF为等腰三角形,再利用解直角三角形即可得出结果;(2)由旋转的性质可得线段CE,AC,CQ之间的数量关系.
①画出的图形如图9所示.
∵ △ABC为等边三角形,
∴ ∠ABC=60°.
∵ CD为等边三角形的中线,
Q为线段CD上的点,
由等边三角形的对称性得QA=QB.
∵ ∠DAQ=α,
∴ ∠ABQ=∠DAQ=α,∠QBE=60°-α.
∵ 线段QE为线段QA绕点Q顺时针旋转所得,
∴ QE = QA.
∴ QB=QE.
可得 .
②.
证法一:如图10,延长CA到点F,使得AF=CE,连接QF,作QH⊥AC于点H.
∵ ∠BQE=60°+2α,点E在BC上,
∴ ∠QEC=∠BQE+∠QBE =(60°+2α)+( 60°-α)=120°+α.
∵ 点F在CA的延长线上,∠DAQ=α,
∴ ∠QAF=∠BAF+∠DAQ=120°+α.
∴ ∠QAF=∠QEC.
又∵ AF =CE,QA=QE,
∴ △QAF≌△QEC.
∴ QF=QC.
∵ QH⊥AC于点H,
∴ FH=CH,CF=2CH.
∵ 在等边三角形ABC中,CD为中线,
点Q在CD上,
∴ ∠ACQ==30°,
即△QCF为底角为30°的等腰三角形.
∴ .
∴ .
即.
思路二:如图11,延长CB到点G,使得BG=CE,连接QG,可得
△QBG≌△QEC,△QCG为底角为30°的等腰三角形,与证法一
同理可得 .
(2)如图12,当30°<α<60°时,.
科目:初中数学 来源: 题型:
【题目】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.
(1)求证:;
(2)判断AF与BD是否平行,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2每辆60座客车租金共计1880元
(1) 求两种车租金每辆各多少元?
(2) 若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
(1)求m,n的值;
(2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中;点为坐标原点,点,点、在坐标轴上,点在边上,直线交轴于点.对于坐标平面内的直线,先将该直线向右平移个单位长度,再向下平移个单位长度,这种直线运动称为直线的斜平移.现将直线经过次斜平移,得到直线.
(备用图)
(1)求直线与两坐标轴围成的面积;
(2)求直线与的交点坐标;
(3)在第一象限内,在直线上是否存在一点,使得是等腰直角三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现将三张形状、大小完全相同的平行四边形透明纸片分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形 纸片的每个顶点与小正方形的顶点重合(如图①、图②、图③).
图②矩形(正方形)
,
分别在图①、图②、图③中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.
要求:
(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形.
(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙.
(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校学生数学兴趣小组为了解本校同学对上课外补习班的态度,在学校抽取了部分同学进行了问卷调查,调查分别为“A﹣非常赞同”、“B﹣赞同”、“C﹣无所谓”、“D﹣不赞同”等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:
(1)抽取了多少名同学进行了问卷调查?
(2)请补全条形统计图.
(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为 度.
(4)若该校有3000名学生,请你估计该校学生对持“赞同”和“非常赞同”两种态度的人数之和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com