1£®Èçͼ1£¬ÔÚ¾ØÐÎABCDÖУ¬AB=8£¬AD=4£¬¶¯µãE´ÓAµã³ö·¢ÒÔ2¸ö µ¥Î»/sµÄËÙ¶ÈÏòÖÕµãBÔ˶¯£¬Í¬Ê±¶¯µãF´ÓAµã³ö·¢ÒÔ1¸öµ¥Î»/sµÄËÙ¶ÈÏòÖÕµãDÔ˶¯£¬Ô˶¯¹ý³ÌÖУ¬½«¡÷AEFÑØEF·­ÕÛ£¬µãAµÄÂäµãΪPµã£¬ÉèÔ˶¯µÄʱ¼äΪt£¨s£©£®
£¨1£©¢ÙÅжÏEFÓëBDµÄλÖùØÏµÊÇÆ½ÐУ»
¢Út=2sʱ£¬µãPÂäÔÚ¶Ô½ÇÏßBDÉÏ£®
£¨2£©Èô¡÷PEFÓë¡÷ABDÖØµþ²¿·ÖµÄÃæ»ýΪy£¬ÇóyÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢ÇóÖØµþ²¿·ÖÃæ»ýµÄ×î´óÖµ£®
£¨3£©µ±tΪºÎֵʱ£¬¡÷PEFµÄÍâ½ÓÔ²Óë¾ØÐεÄÒ»Ìõ±ßÏàÇУ¨Ö±½Óд³ö½á¹û£©£®

·ÖÎö £¨1£©¸ù¾Ý¡÷AEF¡×¡÷ADB¼´¿ÉÖ¤µÃEF¡ÎBD£»
£¨2£©µ±EFÆ½ÒÆµ½Aµ½BDµÄ´¹Ï߶εÄÖеãʱ£¬¼´Eµ½ABµÄÖеãʱ£¬PÂäÔÚBDÉÏ£»
£¨3£©µ±0£¼t¡Ü2ʱ£¬Öغϲ¿·ÖµÈÓÚ¡÷AEFµÄÃæ»ý£»
µ±2£¼t¡Ü4ʱ£¬¸ù¾Ý¡÷PEF¡×¡÷PGH£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÃæ»ýµÄ±ÈµÈÓÚÏàËÆ±ÈµÄƽ·½ÇóµÃ¡÷PGHµÄÃæ»ý£¬ÔòÖØºÏ²¿·ÖµÄÃæ»ý¼´¿ÉÇóµÃ£¬È»ºóÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇóµÃ×îÖµ£»
£¨4£©ÒÔABËùÔÚÖ±ÏßΪxÖᣬÒÔADËùÔÚÖ±ÏßΪyÖᣬÔòEµÄ×ø±êÊÇ£¨2t£¬0£©£¬FµÄ×ø±êÊÇ£¨0£¬t£©£¬EFÊÇÔ²µÄÖ±¾¶£¬EFµÄÖеãÊÇÔ²ÐÄ£¬¸ù¾ÝÏàÇÐʱԲÐĵ½Ö±ÏߵľàÀëµÈÓÚ°ë¾¶¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©EFºÍBDµÄ¹ØÏµÊÇEF¡ÎBD£®
´ð°¸ÊÇ£ºÆ½ÐУ»
£¨2£©µ±t=2ʱ£¬EºÍF·Ö±ðÔÚABºÍADµÄÖе㣬ÇÒEF¡ÎBD£¬ÔòAµÄ¶Ô³ÆµãPÂäÔÚBDÉÏ£®
¹Ê´ð°¸ÊÇ£º2£»
£¨3£©µ±0£¼t¡Ü2ʱ£¬Öغϲ¿·ÖµÈÓÚ¡÷AEFµÄÃæ»ý£¬Ôòy=$\frac{1}{2}$¡Á2t•t=t2£¬Ôòµ±t=2ʱ£¬×î´óÖµÊÇ4£»
µ±2£¼t¡Ü4ʱ£¨Èçͼ1£©£¬Á¬½ÓAP½»BDÓÚµãM£¬
ÔÚÖ±½Ç¡÷ABDÖУ¬BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$£¬
ÔòAM=$\frac{AB•AD}{BD}$=$\frac{8¡Á4}{4\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$£®
ͬÀíAN=$\frac{2\sqrt{5}}{5}$t£¬
ÔòPM=PN-MN=AN-MN=$\frac{2\sqrt{5}}{5}$t-£¨$\frac{8\sqrt{5}}{5}$-$\frac{2\sqrt{5}}{5}$t£©=$\frac{4\sqrt{5}}{5}$t-$\frac{8\sqrt{5}}{5}$£¬
¡ßEF¡ÎBD£¬
¡à¡÷PMN¡×¡÷PEF£¬
¡à$\frac{{S}_{¡÷PGH}}{{S}_{¡÷PEF}}$=£¨$\frac{PM}{PN}$£©2=£¨$\frac{PM}{AN}$£©2=£¨2-$\frac{4}{t}$£©2£¬
ÔòS¡÷PGH=t2£¨2-$\frac{4}{t}$£©2=4t2-16t+16£¬
Ôòy=t2-£¨4t2-16t+16£©£¬¼´y=-3t2+16t-16£®
Ôòµ±t=$\frac{8}{3}$ʱ£¬yÓÐ×î´óÖµÊÇ£º$\frac{16}{3}$£®
×ÜÖ®£¬µ±t=$\frac{8}{3}$ʱ£¬yÓÐ×î´óÖµÊÇ£º$\frac{16}{3}$£»
£¨3£©Èçͼ2£¬ÒÔABËùÔÚÖ±ÏßΪxÖᣬÒÔADËùÔÚÖ±ÏßΪyÖᣬÔòEµÄ×ø±êÊÇ£¨2t£¬0£©£¬FµÄ×ø±êÊÇ£¨0£¬t£©£®
ÔòEFµÄÖеãQµÄ×ø±êÊÇ£¨t£¬$\frac{1}{2}$t£©£¬EF=$\sqrt{5}$t£¬¼´Ô²µÄ°ë¾¶ÊÇ$\frac{\sqrt{5}}{2}$t£®
µ±Ô²ºÍCDÏàÇÐʱ£¬4-$\frac{1}{2}$t=$\frac{\sqrt{5}}{2}$t£¬½âµÃ£ºt=2£¨$\sqrt{5}$+1£©£®

µãÆÀ ±¾Ì⿼²éÁËͼÐεÄÕÛµþÒÔ¼°ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÃæ»ýµÄ±ÈµÈÓÚÏàËÆ±ÈµÄƽ·½£¬ÇóµÃPMµÄ³¤ÊDZ¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Õý·½ÐÎABCDÖУ¬µãPÊǶԽÇÏßACÉÏÒ»µã£¬PE¡ÍCDÓÚE£¬PF¡ÍADÓÚF£®
£¨1£©ÇóÖ¤£ºEF=PB£»
£¨2£©µ±µãPÔÚÏß¶ÎAC£¨µãP²»ÓëA¡¢CÖØºÏ£©ÉÏÔ˶¯Ê±£¬EFµÄ³¤¶ÈÔÚ·¢Éú±ä»¯£¬Õâ¸ö³¤¶ÈÓÐ×î´óÖµ»¹ÊÇ×îСֵ£¿µ±AB=4ʱ£¬ÔËÓã¨1£©ÖнáÂÛÇó³öÕâ¸öÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®²»µÈʽ2x-1£¾3µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®x£¾1B£®x£¼1C£®x£¾2D£®x£¼2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ä³Êй涨ѧÉúµÄѧÆÚÌåÓý×ۺϳɼ¨Âú·ÖÊÇ100·Ö£¬ÆäÖдó¿Î¼ä»î¶¯ºÍÏÂÎçÌå¶ÍÕ¼20%£¬ÆÚÖп¼ÊÔÕ¼30%£¬ÆÚÄ©¿¼ÊÔÕ¼50%£®Ð¡Ã÷µÄÈýÏî³É¼¨£¨°Ù·ÖÖÆ£©·Ö±ðÊÇ95·Ö¡¢90·Ö¡¢86·Ö£¬ÔòСÃ÷ÕâѧÆÚµÄÌåÓý×ۺϳɼ¨Îª89·Ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨1-$\frac{1}{x+1}$£©¡Â$\frac{x}{{x}^{2}-1}$£¬ÆäÖÐx=$\sqrt{3}$+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡÷AOBÓë¡÷COD¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨1£©Èçͼ1£¬µÈÑüÖ±½Ç¡÷AOBÓëµÈÑüÖ±½Ç¡÷CODÓй«¹²¶¥µãO£¬µãC¡¢O¡¢BÔÚͬһÌõÖ±ÏßÉÏ£®
¢ÙÈôCO=4£¬BO=3£¬Çó¡÷ADBµÄÃæ»ý£»
¢ÚÖ¤Ã÷£ºAC=BD£®
£¨2£©Èçͼ2£¬µÈÑüÖ±½Ç¡÷AOBÓëµÈÑüÖ±½Ç¡÷CODÓй«¹²¶¥µãO£¬µãC¡¢O¡¢B²»ÔÚͬһÌõÖ±ÏßÉÏ£®ÅжÏACÓëBDµÄÊýÁ¿¹ØÏµºÍλÖùØÏµ²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ò»¸ö¶à±ßÐγýÁËÒ»¸öÄÚ½ÇÍ⣬ÆäÓà¸÷ÄڽǺÍΪ1000¡ã£¬ÇóÕâ¸öÄڽǺÍÕâ¸ö¶à±ßÐεıßÊýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¼ÆË㣺£¨x+2£©2-£¨x-2£©£¨x+2£©=4x+8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚËıßÐÎABCDÖУ¬¡ÏABC+¡ÏADC=180¡ã£¬CB=CD£®
£¨1£©Èçͼ1£¬ÇóÖ¤£ºACƽ·Ö¡ÏBAD£»
£¨2£©Èçͼ2£¬Á¬½ÓBD½»ACÓÚµãE£¬ÔÚABÑÓ³¤ÏßÉÏȡһµãM£¨µãM²»ÔÚÖ±ÏßCDÉÏ£©£¬Á¬½ÓMC£¬¹ýD×÷DN¡ÍBD½»MCÑÓ³¤ÏßÓÚµãN£¬Èô¡ÏABD=90¡ã£¬ÊÔ̽¾¿Ïß¶ÎAD¡¢AM¡¢DNÖ®¼äµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸