精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.

(1)求证:AE•BC=BD•AC;                 

(2)如果SADE=3,SBDE=2,DE=6,求BC的长.

 


考点: 相似三角形的判定与性质. 

分析: (1)由BE平分∠ABC交AC于点E,ED∥BC,可证得BD=DE,△ADE∽△ABC,然后由相似三角形的对应边成比例,证得AE•BC=BD•AC;

(2)根据三角形面积公式与SADE=3,SBDE=2,可得AD:BD=3:2,然后由平行线分线段成比例定理,求得BC的长.

解答: (1)证明:∵BE平分∠ABC,

∴∠ABE=∠CBE.…(1分)

∵DE∥BC,

∴∠DEB=∠CBE…(1分)

∴∠ABE=∠DEB.

∴BD=DE,…(1分)

∵DE∥BC,

∴△ADE∽△ABC,

…(1分)

∴AE•BC=BD•AC;…(1分)

(2)解:设△ABE中边AB上的高为h.

,…(2分)

∵DE∥BC,

. …(1分)

∴BC=10. …(2分)

点评: 此题考查了相似三角形的判定与性质、平行线分线段成比例定理以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

 

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


对于一次函数y=﹣2x+4,下列结论错误的是(     )

      A.函数值随自变量的增大而减小

      B.函数的图象不经过第三象限

      C.函数的图象向下平移4个单位长度得y=﹣2x的图象

      D.函数的图象与x轴的交点坐标是(0,4)

查看答案和解析>>

科目:初中数学 来源: 题型:


(3x+1)2=4(x﹣2)2

 

查看答案和解析>>

科目:初中数学 来源: 题型:


已知关于x的一元二次方程x2﹣6x+1=0两实数根为x1、x2,则x1+x2=  

查看答案和解析>>

科目:初中数学 来源: 题型:


关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是                   

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;

(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是(     )

    A.   B.   C.   D.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,某农场老板准备建造一个矩形羊圈ABCD,他打算让矩形羊圈的一面完全靠着墙MN,墙MN可利用的长度为25m,另外三面用长度为50m的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分)

(1)若要使矩形羊圈的面积为300m2,则垂直于墙的一边长AB为多少米?

(2)农场老板又想将羊圈ABCD的面积重新建造成面积为320m2,从而可以养更多的羊,请聪明的你告诉他:他的这个想法能实现吗?为什么?

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,两个同心圆的直径分别为6cm和10cm,大圆的一条弦AB与小圆相切,则弦AB的长为(  )

  A. 4cm B. 6cm C. 8cm D. 10cm

 

查看答案和解析>>

同步练习册答案