【题目】如图,利用函数y=x2﹣4x+3的图象,直接回答:
(1)方程x2﹣4x+3=0的解是 ;
(2)当x满足 时,函数值大于0.
(3)当0<x<5时,y的取值范围是 .
【答案】(1)x1=1,x2=3;(2)x<1或x>3;(3)﹣1≤y<8.
【解析】
(1)根据方程x2﹣4x+3=0的解就是抛物线与x轴交点的横坐标可得答案;
(2)结合函数图象写出抛物线在x轴上方所对应的自变量的范围即可;
(3)先分别计算出x=0和x=5对应的函数值,再利用配方法得到当x=2时,y有最小值﹣1,然后结合函数图象求解.
(1)∵抛物线与x轴的交点坐标为(1,0),(3,0),
∴方程x2﹣4x+3=0的解是x1=1,x2=3;
(2)由函数图象可知:当x<1或x>3时,y>0;
(3)当x=0时,y=x2﹣4x+3=3;当x=5时,y=x2﹣4x+3=25﹣20+3=8,
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴当x=2时,y有最小值﹣1,
∴当0<x<5时,y的取值范围为﹣1≤y<8.
科目:初中数学 来源: 题型:
【题目】已知:在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.
(1)如图①,若AB=1,DG=2,求BH的长;
(2)如图②,连接AH、GH,求证:AH=GH且AH⊥GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于抛物线y=x2-(a+1)x+a-2,下列说法错误的是( )
A. 开口向上 B. 当a=2时,经过坐标原点O
C. a>0时,对称轴在y轴左侧 D. 不论a为何值,都经过定点(1,-2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②7a+c<0;③a+b≤m(am+b)(m为任意实数)④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的个数有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c图象经过(0,0)、(1,1)、(1,9)三点,下列性质错误的是( )
A.开口向上B.对称轴在y轴左侧
C.经过第四象限D.当x>0,y随x增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,D在BC上,且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为x秒.
(1)周含x的代表数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABN中,∠B =90°,点M是AB上的动点(不与A,B两点重合),点C是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.
(1)在图1中依题意补全图形;
(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM=45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:
要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.
他们的一种作法是:过点M在AB下方作MDAB于点M,并且使MD=CN.通过证明△AMD△CBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.
请你参考上面同学的思路,用另一种方法证明∠APM=45°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com