精英家教网 > 初中数学 > 题目详情

【题目】设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,由求根公式x12=可推出x1+x2=﹣,x1x2=,我们把这个命题叫做韦达定理.设α,β是方程x2﹣5x+3=0的两根,请根据韦达定理求下列各式的值:

(1)α+β=   ,αβ=   

(2)

(3)2α2﹣3αβ+10β.

【答案】(1)5;3;(2);(3)35.

【解析】

(1)根据韦达定理得出α+β=5,αβ=3.

(2)将变形为,再代入数值计算即可;

(3)根据一元二次方程的解的定义得出α2﹣5α+3=0,即α2=5α﹣3,则2﹣3αβ+10β变形为10(α+β)﹣3αβ﹣6,再代入数值计算即可.

(1)α,β是方程x2﹣5x+3=0的两根,

α+β=5,αβ=3.

故答案为:5;3;

(2)

(3)α方程x2﹣5x+3=0的根,

α2﹣5α+3=0,即α2=5α﹣3,

2﹣3αβ+10β=10α﹣6﹣3αβ+10β=10(α+β)﹣3αβ﹣6=10×5﹣3×3﹣6=35.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,∠ABC为锐角,ABBC,点EAD上的一点,延长CEF,连接BFAD于点G使∠FBCDCE

求证:∠DF

在直线AD找一点P,使以点BPC为顶点的三角形与以点CDP为顶点的三角形相似.(在原图中标出准确P点的位置,必要时用直尺和圆规作出P点,保留作图的痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B-20),点C80),与y轴交于点A

1)求二次函数y=ax2+bx+4的表达式;

2)连接ACAB,若点N在线段BC上运动(不与点BC重合),过点NNM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;

3)连接OM,在(2)的结论下,求OMAC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求证:此方程总有两个实数根;

(2)若此方程有一个根大于0且小于1,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A,B是⊙O上的两点,∠AOB=120°,C的中点.

(1)如图1,求∠A的度数;

(2)如图2,延长OA至点D,使OA=AD,连接DC,延长OBDC的延长线于点E.若⊙O的半径为1,求DE的长.

1         图2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点,点Cx轴正半轴上一动点,过点Ay轴于点E

如图,若点C的坐标为,试求点E的坐标;

如图,若点Cx轴正半轴上运动,且 其它条件不变,连接DO,求证:OD平分

若点Cx轴正半轴上运动,当时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是(

A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8 …,顶点依次为A1,A2,A3,A4,A5,…,则顶点A55的坐标是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

同步练习册答案