精英家教网 > 初中数学 > 题目详情

【题目】小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.

请你根据图中提供的信息,解答下列问题:

(1)在图1中,将书画部分的图形补充完整;

(2)在图2中,求出球类部分所对应的圆心角的度数,并分别写出爱好音乐”、“书画”、“其它的人数占本班学生数的百分数;

(3)观察图1和图2,你能得出哪些结论(只要写出一条结论).

【答案】(1)补图见解析;(2)“球类”126°;音乐30%,书画25%,其它10%;(3)喜欢球类的人数最多.

【解析】由图可知:(1)该班的总人数为14÷35%=40人,则喜欢书画类的有40﹣14﹣12﹣4=10人;

2球类部分所对应的圆心角的度数360°×35%=126°;音乐所占的百分比为12÷40=30%,书画所占的百分比为10÷40=25%,其它所占的百分比为4÷40=10%

3)结论:喜欢球类的人数最多.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=k为常数,且k≠0)的图象交于A1a),B两点.

1)求反比例函数的表达式及点B的坐标;

2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用正方形是墩垒石梯,下图分别表示垒到一、二阶梯时的情况,那么照这样垒下去

一级 二级

①填出下表中未填的两空,观察规律。

阶梯级数

一级

二级

三级

四级

石墩块数

3

9

②到第n级阶梯时,共用正方体石墩_______________块(用n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校学生的课外阅读情况,随机抽查了名学生周阅读用时数,结果如下表:

周阅读用时数(小时)

4

5

8

12

学生人数()

3

4

2

1

则关于这名学生周阅读所用时间,下列说法正确的是( )

A. 中位数是B. 众数是C. 平均数是D. 方差是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

1

2

3

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)﹣0.5+3+2.65+1.15

2)﹣81÷|2|×÷(﹣16);

3)(﹣23+(﹣12÷+)×(﹣18).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB为定点,定直线l//ABPl上一动点.点MN分别为PAPB的中点,对于下列各值:

线段MN的长;

②△PAB的周长;

③△PMN的面积;

直线MNAB之间的距离;

⑤∠APB的大小.

其中会随点P的移动而变化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=6EBC边的中点,FCD边上的一点,且DF=2,若MN分别是线段ADAE上的动点,则MN+MF的最小值为   

查看答案和解析>>

同步练习册答案