已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:
(1)△AEF≌△CDE;
(2)△ABC为等边三角形.
![]()
【考点】全等三角形的判定;等边三角形的判定.
【专题】证明题;压轴题.
【分析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.
(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等边三角形.
【解答】证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量加等量和相等).
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),
△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).
∴△ABC是等边三角形(等边三角形的判定).
![]()
【点评】本题利用了等量加等量和相等,全等三角形的判定和性质,还有三角形的外角等不相邻的两个内角之和,等边三角形的判定(三个角都是60°,那么就是等边三角形).
科目:初中数学 来源: 题型:
下列运算正确的是( )
A.(a﹣b)2=a2﹣b2 B.(a+b)2=a2+ab+b2
C.(1+a)(a﹣1)=a2﹣1 D.(a+b)(b﹣a)=a2﹣b2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com