【题目】如图,∠AOB=56°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________________.
【答案】124°或76°或28°
【解析】
题目要求∠OEC的度数,而没有告诉∠OEC是等腰△OCE的顶角还是底角,由此此题要分类讨论;由角平分线的定义先求出∠AOC的度数,再分OE=CE、OC=CE、OE=OC进行讨论,结合等腰三角形的性质和三角形的内角和定理即可求出∠OEC的度数.
∵∠AOB=56°,0C平分∠AOB,
∴∠AOC=28°,
①当E在时,OE=CE,
∵∠AOC=∠OCE=28°
∴∠OEC'=180°-28°-28°=124°,
②当E在点时,OC=OE,可得:
③当E在时,OC'=CE,
则∠OEC=∠A0C=28°,
故答案为: 124°或76°或28°.
【点睛]
本题考查等腰三角形内角的题目,解决本题的关键是结合等腰三角形的性质和三角形内角和定理解答.
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A的坐标(0,4),C的坐标为(8,0),把矩形折叠,使点C与点A重合,折痕为DE.
求出点E的坐标.
(2)点M为OC的中点,点P为线段AB上一动点,作直线EP,分别过点O、C作直线EP的垂线,垂足分别为点F、G.求证:MF=MG
(3)在(2)的条件下,当△FMG为等腰直角三角形时,请直接写出此时直线EP的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在第一象限,且,点的坐标为,设的面积为,
(1)当点的横坐标为1时,试求的面积.
(2)求S关于x的函数表达式及自变量x的取值范围.
(3)试判断的面积能否大于6,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)
(1)本次调查获取的样本数据的众数是 ;
(2)这次调查获取的样本数据的中位数是 ;
(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;
(3)求证:CD=HF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某计算机中有、、三个按键,以下是这三个按键的功能.
(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成7.
(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.
(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.
若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少( )
A. 0.01 B. 0.1 C. 10 D. 100
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=13,点A、B的坐标分别为(1,0),(6,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣4上时,线段BC扫过的面积为( )
A.84B.80C.91D.78
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=与x轴、y轴分别相交于点A、B,直线l2与直线y=﹣x平行,且与直线l1相交于点B,与x轴交于点C.
(1)求点C坐标;
(2)若点P是y轴右侧直线l1上一动点,点Q是直线l2上一动点,点D(﹣2,6),求当S△PBC=S四边形AOBD时,点P的坐标,并求出此时,PQ+DQ的最小值;
(3)将△AOB沿着直线l2平移,平移后记为△A1O1B1,直线O1B1交11于点M,直线A1B1交x轴于点N,当△B1MN是等腰三角形时,求点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,是外一点,,分别和切于,两点,是上任意一点,过作的切线分别交,于,.
若的周长为,则的长为________;
连接、,若,则的度数为________度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com