精英家教网 > 初中数学 > 题目详情
3.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为BC的中点,P为BC上一点,PF⊥AB于F,PE⊥AC于E,则DF与DE的关系为DF=DE且DF⊥ED.

分析 如图,连接AD.欲证明DF=DE,只要证明△ADF≌△CDE即可.

解答 解:如图,连接AD.

∵AB=AC,∠BAC=90°,BD=DC,
∴AD=BD=DC,∠C=∠BAD=45°,
∵PE⊥AB,PF⊥AC,
∴∠AFP=∠AEP=∠EAF=90°,
∴四边形AFPE是矩形,∠C=∠EPC=45°,
∴PE=AF,PE=EC,
∴AF=EC,
在△ADF和△CDE中,
$\left\{\begin{array}{l}{AD=DC}\\{∠FAD=∠C}\\{AF=EC}\end{array}\right.$,
∴△ADF≌△CDE,
∴DF=DE,∠FDA=∠EDP,
∴∠FDE=∠ADC=90°
故答案为DF=DE且DF⊥DE.

点评 本题考查等腰直角三角形的性质、全等三角形的判定和性质、矩形的判定和性质等知识,解题的关键是灵活运用所学知识,正确寻找全等三角形,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.学完“等腰三角形”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?

请你作出判断,在下列横线上填写“是”或“否”:①是;②是;选择一个给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知,AB、CD是⊙O的两条直径,E为$\widehat{AC}$的中点,求证:EO平分∠DEB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知关于x、y的二元一次方程组$\left\{\begin{array}{l}{x+2y=3}\\{3x+5y=m+2}\end{array}\right.$的解满足x+y=0,求有理数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:
(1)$\frac{tan(-60°)}{tan420°}$+tan300°•tan(-660°);
(2)cos2(-α)+sin(-α)•cos(2π+α)•tan(-α)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在矩形ABCD中,对角线AC,BD相交于点O,OE⊥BC于点E,连接DE交OC于点F,作FG⊥BC于点G,则线段BG与GC的数量关系是BG=2CG.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知一个圆锥的侧面积是底面积的2倍,圆锥的母线长为2,则圆锥的底面半径是(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.把如图所示的图形分成4个全等的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AC=BC,∠ACB=90°,将△ABC绕点C逆时针旋转α角(0°<α<90°),得到△A1B1C,连接BB1,设CB1交AB于D,A1B1分别交AB,AC于E,F
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外);
(2)当α等于多少度时,△BB1D是等腰三角形.

查看答案和解析>>

同步练习册答案