精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,楼顶有一根天线,为了测量楼的高度,在地面上取成一条直线的三点EDC,在点C处测得天线顶端A的仰角为60°,从点C走到点DCD6米,从点D处测得天线下端B的仰角为45°.又知ABE在一条线上,AB25米,求楼高BE

【答案】719)米

【解析】

根据等腰直角三角形的性质可得DEBE,设BEx米,则AE=(x25)米,CE=(x6)米,然后根据tanC列出方程即可求出结论.

解:∵从点D处测得天线下端B的仰角为45°

DEBE

BEx米,则AE=(x25)米,CE=(x6)米,

∵在点C处测得天线顶端A的仰角为60°

tanC

x719),即楼高BE719)米.

答:楼高BE719)米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:

(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);

(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?

(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数)的图象如图所示,对称轴为直线,有下列结论:①;②;③.其中,正确结论的个数是(

A.3B.2C.1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点E为BC边的中点,把△ABE沿直线AE折叠,B点落在点B′处,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠CB′D=135°;④BB′=BC;⑤.其中正确的个数为( ).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本投资)为z(万元).

(1)试写出y与x之间的函数关系式(不写x的取值范围);

(2)试写出z与x之间的函数关系式(不写x的取值范围);

3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,在边(不与重合),将矩形沿折叠,使点分别落在点处有下列结论:

互余;

②若平分

③若直线经过点

④若直线交边分别于为等腰三角形时,五边形的周长为.其中正确结论的序号是_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

14x﹣22﹣49=0

2x2﹣5x﹣7=0

3)(2x+1)(x﹣2=3

43xx﹣2=22﹣x).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB = 90DAB的中点,AEDCCEDA

1)求证:四边形ADCE是菱形;

2)连接DE,若AC =BC =2,求证:△ADE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是同-种蔬菜的两种裁植方法.甲:四珠顺次连结成为一个菱形,且.乙:四株连结成一个正方形。其中两行作物间的距离为行距;一行中相邻两株作物的距离为株距:设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积。设株距都为,其它客观因素都相同.则对于下列说法:

甲的行距比乙的小;甲的行距为甲、乙两种栽植方式,蔬菜形成的影子面积相同;甲的空隙地面积比乙的空隙地面积少.其中正确的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案