【题目】如图,正方形ABCE的边长为1,点M、N分别在BC、CD上,且△CMN的周长为2,则△MAN的面积的最小值为( )
A.
B.
C.
D.
【答案】A
【解析】解:延长CB至L,使BL=DN, 则Rt△ABL≌Rt△AND,
故AL=AN,
∴△AMN≌△AML,
∴∠MAN=∠MAL=45°,
设CM=x,CN=y,MN=z x2+y2=z2 ,
∵x+y+z=2, 则x=2-y-z
∴(2-y-z)2+y2=z2 ,
整理得2y2+(2z-4)y+(4-4z)=0,
∴△=4(z-2)2-32(1-z)≥0,
即(z+2+2 )(z+2-2 )≥0,
又∵z>0,
∴z≥2 -2,
当且仅当x=y=2- 时等号成立 此时S△AMN=S△AML= MLAB= z
因此,当z=2 -2,x=y=2- 时,S△AMN取到最小值为 -1.
所以答案是:A.
【考点精析】利用二次函数的最值对题目进行判断即可得到答案,需要熟知如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.
科目:初中数学 来源: 题型:
【题目】如图①,△ABC的角平分线BD,CE相交于点P.
(1)如果∠A=80,求∠BPC= .
(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示) .
(3)将直线MN绕点P旋转。
(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)图1阴影面积可表示为_______,图2阴影面积可表示为_____.
请利用图形面积的不同表示方法,写出一个关于、的恒等式_______.
(2)如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个长方形或正方形图形。验证公式(a+b)2=a2+2ab+b2.
(3)图是一个长为2m、宽为2m的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图的形状拼成一个正方形。
请用两种不同的方法求图中阴影部分的面积:
方法1:___________________;
方法2:__________________;
观察图写出下列三个代数式之间的等量关系:
,,
_____________________________;
(4)根据(3)题中的等量关系,解决如下问题:
若,,则________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= ( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ( )
∠ABE= ( )
∴∠ADF=∠ABE
∴ ∥ ( )
∴∠FDE=∠DEB.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄冈市三运会期间,武穴黄商有一种姚明牌运动装每件的销售价y(元)与时间x(周)之间的函数关系式对应的点都在如图所示的图象上,该图象从左至右,依次是线段AB、线段BC、线段CD,而这种运动装每件的进价Z(元)与时间x(周)之间的函数关系式为Z= (1≤x≤16且x为整数)
(1)写出每件的销售价y(元)与时间x(周)之间的函数关系式;
(2)设每件运动装销售利润为w,写出w(元)与时间x(周)之间的函数关系式;
(3)求该运动装第几周出销时,每件运动装的销售利润最大?最大利润为多少?(6分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,四边形ABCD中,∠B=∠D=90°,AE平分∠DAB,AE//CF.
(1)说明:CF平分∠BCD;
(2)作△ADE的高DM,若AD=8,DE=6,AE=10,求DM的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线 的对称轴为 ,交 轴的一个交点为( ,0),且 , 则下列结论:① , ;② ;③ ;④ . 其中正确的命题有( )个.
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com