【题目】已知抛物线 的对称轴为 ,交 轴的一个交点为( ,0),且 , 则下列结论:① , ;② ;③ ;④ . 其中正确的命题有( )个.
A.1
B.2
C.3
D.4
科目:初中数学 来源: 题型:
【题目】某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20 m和11 m的矩形大厅内修建一个60 m2的矩形健身房ABCD.该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m2,新建(含装修)墙壁的费用为80元/m2.设健身房的高为3 m,一面旧墙壁AB的长为x m,修建健身房墙壁的总投入为y元.
(1)求y与x的函数关系式;
(2)为了合理利用大厅,要求自变量x必须满足条件:8≤x≤12,当投入的资金为4800元时,问利用旧墙壁的总长度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.
(1)求证:BD=EC;
(2)若AC=2, , 求菱形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知经过原点的抛物线 与 轴的另一个交点为 ,现将抛物线向右平移 个单位长度,所得抛物线与 轴交于 ,与原抛物线交于点 ,设 的面积为 ,则用 表示 =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的名选手的复赛成绩如图所示.
(1)根据图示补全下表;
平均数(分) | 中位数(分) | 众数(分) | |
队 | |||
队 |
(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;
(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在△ABC中,AD、BD分别平分∠BAC和∠ABC,AD、BD相交于点D,过点D作DE∥AC,DF∥BC分别交AB于点E、F.
①若∠EDF=80°,则∠ADB=________°;
②若∠C=则∠ADB=________°.
(2)如图2,在△ABC中,若∠BAD=∠BAC,∠ABD=∠ABC,AD、BD相交于点D,过点D作DE∥AC,DF∥BC分别交AB于点E、F,若∠EDF=60°,则∠ADB=_______°;
(3)如图3,在△ABC中,AD、BD分别是∠BAC、∠ABC的等分线,AD、BD相交于点D,若∠BAD=∠BAC,∠ABD=∠ABC,过点D作DE∥AC,DF∥BC分别交AB于点E、F,若∠EDF=,则∠ADB的度数是多少?(用表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com