精英家教网 > 初中数学 > 题目详情

【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).

(1)直接写出点E的坐标   

(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:

当t=   秒时,点P的横坐标与纵坐标互为相反数;

求点P在运动过程中的坐标,(用含t的式子表示,写出过程);

当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.

【答案】(1)(﹣2,0);(2)①2;②(﹣3,5﹣t);③能确定, z=x+y.

【解析】试题分析:(1)根据平移的性质即可得到结论;

(2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;

当点P在线段BC上时,点P的坐标(-t2),当点P在线段CD上时,点P的坐标(-35-t);

如图,过PPEBCABE,则PEAD,根据平行线的性质即可得到结论.

解:(1)根据题意,可得

三角形OAB沿x轴负方向平移3个单位得到三角形DEC,

点A的坐标是(1,0),

点E的坐标是(﹣2,0);

故答案为:(﹣2,0);

(2)①∵点C的坐标为(﹣3,2)

∴BC=3,CD=2,

点P的横坐标与纵坐标互为相反数;

点P在线段BC上,

∴PB=CD,

即t=2;

当t=2秒时,点P的横坐标与纵坐标互为相反数;

故答案为:2;

当点P在线段BC上时,点P的坐标(﹣t,2),

当点P在线段CD上时,点P的坐标(﹣3,5﹣t);

能确定,

如图,过P作PFBC交AB于F,

则FE∥AD,

∴∠1=∠CBP=x°,∠2=∠DAP=y°,

∴∠BPA=∠1+∠2=x°+y°=z°,

∴z=x+y.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  )

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中,共有“一红二白”三个球,它们除颜色外其余都相同.
(1)从盒子中摸出1个球,是白球的概率是多少?
(2)从盒子中摸出1个球,不放回再摸出1个球,请用画树状图或列表的方式表示出所有可能的结果,并求出摸出的恰好是“一红一白”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人共收集邮票若干张,其中2000年以前的国内外发行的邮票,2001年国内发行的,2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.

(1)求a,b的值;

(2)①在x轴的正半轴上存在一点M,使SCOM=ABC的面积,求出点M的坐标;

在坐标轴的其他位置是否存在点M,使COM的面积=ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知反比例函数y=的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.

(1)求这两个函数的解析式;

(2)求△MON的面积;

(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD.

如图1,你能得出∠A+E+C=360°吗?

如图2,猜想出∠A.C、E的关系式并说明理由.

如图3,A.C、E的关系式又是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据我国古代《周髀算经》记载,大约公元1120年,商高曾对周公说过一段话,其意思是将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三,股是四,那么弦就等于五,后人概括为“勾三股四弦五”。

(1)观察:3,4,5; 5,12,13; 7,24,25……发现这些勾股数的勾都是奇数,且从3起就没有间断过。计算 并根据发现的规律,分别写出能表示7,24,25的股和弦的算式;

(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合理猜想它们之间的两种相等关系并对其一种猜想加以说明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O.

1 2

(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=      ;

(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数.

查看答案和解析>>

同步练习册答案