精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,AC与BD相交于点O,AB=AC,延长BC到点E,使CE=BC,连接AE,分别交BD、CD于点F、G.
(1)求证:△ADB≌△CEA;
(2)若BD=9,求AF的长.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD=BC,∠ABC+∠BAD=180°.

又∵AB=AC,

∴∠ABC=∠ACB.

∵∠ACB+∠ACE=180°,

∴∠BAD=∠ACE.

∵CE=BC,

∴CE=AD,

在△ABE和△CEA中,

∴△ADB≌△CEA(SAS)


(2)解:∵△ADB≌△CEA,

∴AE=BD=9.

∵AD∥BC,

∴△ADF∽△EBF.

=

=

∴AF=3


【解析】(1)由平行四边形的性质得出AD=BC,∠ABC+∠BAD=180°,由等腰三角形的性质得出∠ABC=∠ACB.证出∠BAD=∠ACE,CE=AD,由SAS证明△ADB≌△CEA即可;(2)由全等三角形的性质得出AE=BD=6,由平行线得出△ADF∽△EBF,得出对应边成比例,即可得出结果.
【考点精析】掌握平行四边形的性质是解答本题的根本,需要知道平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在数轴上有两点A、B,回答下列问题
(1)写出A、B两点所表示的数,并求线段AB的长;
(2)将点A向左移动个单位长度得到点C,点C表示的数是多少,并在数轴上表示出来
(3)数轴上存在一点D,使得C、D两点间的距离为8,请写出D点表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 , 它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,它交x轴于A2;将C2绕A2旋转180°得到C3 , 交x轴于A3;…如此进行下去,直至得到C7 , 若点P(13,m)在第7段抛物线C7上,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形 ABCD 中,∠A=160°,∠B=50°,∠ADC、∠BCD 的平分线相交于点E,则∠CED=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形和正方形中,点CG上,BC=1CE=3HAF的中点,那么的长是( )

A.B.C.D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)1阴影面积可表示为_______,图2阴影面积可表示为_____.

请利用图形面积的不同表示方法,写出一个关于的恒等式_______.

(2)如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个长方形或正方形图形。验证公式(a+b)2=a2+2ab+b2.

(3)是一个长为2m、宽为2m的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图的形状拼成一个正方形。

请用两种不同的方法求图中阴影部分的面积:

方法1___________________

方法2__________________

观察图写出下列三个代数式之间的等量关系:

_____________________________

(4)根据(3)题中的等量关系,解决如下问题:

,则________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的文字,解答问题.

大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.

请解答下列问题:

(1)求出+2的整数部分和小数部分;

(2)已知:10+=x+y,其中x是整数,且0y1,请你求出(xy)的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,对角线交于点,点分别是的中点,于点.有下列4个结论:①;②;③;④,其中说法正确的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与双曲线相交于A21)、B两点.

1)求mk的值;

2)不解关于xy的方程组直接写出点B的坐标;

3)直线经过点B吗?请说明理由.

【答案】1m=1k=2;(2)(-1,-2);(3)经过

【解析】试题分析:(1)把A21)分别代入直线与双曲线即可求得结果;

2)根据函数图象的特征写出两个图象的交点坐标即可;

3)把x=1m=1代入即可求得y的值,从而作出判断.

1)把A21)分别代入直线与双曲线的解析式得m=1k=2

2)由题意得B的坐标(-1,-2);

3)当x=1m=1代入y=2×(1)+4×(1)=24=2

所以直线经过点B(1,-2).

考点:反比例函数的性质

点评:反比例函数的性质是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.

型】解答
束】
20

【题目】某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(2)的反比例函数,其图象如图所示(千帕是一种压强单位)

1)写出这个函数的解析式;

2)当气球的体积为0.8立方米时,气球内的气压是多少千帕;

3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。

查看答案和解析>>

同步练习册答案