【题目】如图等腰三角形的顶角=45°,以AB为直径的半圆O与BC,AC相较于点D,E两点,则弧AE所对的圆心角的度数为( )
A.40°B.50°
C.90°D.100°
【答案】C
【解析】
连AD,根据圆周角定理的推论得到∠ADB=90°,即AD⊥BC,又根据等腰三角形的性质得到AD平分∠BAC,得到∠BAD=∠DAC=22.5°,根据圆周角定理得∠EBC=∠DAC=22.5°;再根据圆周角的度数等于它所对的弧的度数的一半得到弧BD的度数=弧DE的度数=2×22.5°=45°,即可求出弧AE的度数.
连AD,BE,如图
∵AB为直径,
∴∠ADB=90°,即AD⊥BC,
又∵AB=AC,
∴AD平分∠BAC,
而∠BAC=45°,
∴∠BAD=∠DAC=22.5°,
∴∠EBC=∠DAC=22.5°,
∴弧BD的度数=弧DE的度数=2×22.5°=45°,
∴弧AE的度数=180°45°45°=90°.
故选:C.
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是( )
A.2cm或8cmB.2cmC.1cm 或8cmD.1cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=﹣x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.
(1)求线段AB的长度;
(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.
①当⊙N与x轴相切时,求点M的坐标;
②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相较于A.B两点,与y轴相交于点C(0,-3),抛物线的对称轴为直线x=1.
(1)求二次函数的解析式;
(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由;
(3)若点M在x轴上,点P在抛物线上,是否存在以点A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请求出所有满足要求的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y= x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为5,O是AB边的中点,点E是正方形内一动点,OE=2,将线段CE绕C点逆时针旋转90°得CF,连OF,线段OF的最小值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com