精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点F.
求证:BF=AC.

【答案】证明:∵CD⊥AB,
∴∠BDC=∠CDA=90°;
∵∠ABC=45°,
∴∠DCB=∠ABC=45°(三角形的内角和定理),
∴DB=DC(等角对等边);
∵BE⊥AC,
∴∠AEB=90°,
∴∠A+∠ABE=90°(直角三角形的两个锐角互为余角);
∵∠CDA=90°,
∴∠A+∠ACD=90°,
∴∠ABE=∠ACD(同角的余角相等);
在△BDF和△CDA中,

∴△BDF≌△CDA(ASA),
∴BF=AC(全等三角形的对应边相等)
【解析】由已知条件“∠ABC=45°,CD⊥AB”可推知△BCD是等腰直角三角形,根据等腰直角三角形的性质知:∠DCB=∠ABC
=45°、DB=DC;然后由已知条件“BE⊥AC”求证∠ABE=∠ACD;再利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号):

根据以上信息,解答下列问题:

1)该班共有   名学生;

2)补全条形统计图;

3)该班学生所穿校服型号的众数为   ,中位数为   

4)如果该校预计招收新生1500名,根据样本数据,估计新生穿170型校服的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一列有序数对:(1,2),(4,5),(9,10),(16,17),…,按此规律,第5对有序数对为;若在平面直角坐标系xOy中,以这些有序数对为坐标的点都在同一条直线上,则这条直线的表达式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:
根据联合国《人口老龄化及其社会经济后果》中提到的标准,当一个国家或地区65 岁及以上老年人口数量占总人口比例超过7%时,意味着这个国家或地区进入老龄化.从经济角度,一般可用“老年人口抚养比”来反映人口老龄化社会的后果.所谓“老年人口抚养比”是指某范围人口中,老年人口数(65 岁及以上人口数)与劳动年龄人口数(15﹣64 岁人口数)之比,通常用百分比表示,用以表明每100 名劳动年龄人口要负担多少名老年人.
以下是根据我国近几年的人口相关数据制作的统计图和统计表.
2011﹣2014 年全国人口年龄分布图

2011﹣2014 年全国人口年龄分布表

2011年

2012年

2013年

2014年

0﹣14岁人口占总人口的百分比

16.4%

16.5%

16.4%

16.5%

15﹣64岁人口占总人口的百分比

74.5%

74.1%

73.9%

73.5%

65岁及以上人口占总人口的百分比

m

9.4%

9.7%

10.0%

根据以上材料解答下列问题:
(1)2011 年末,我国总人口约为亿,全国人口年龄分布表中m的值为
(2)若按目前我国的人口自然增长率推测,到2027 年末我国约有14.60 亿人.假设0﹣14岁人口占总人口的百分比一直稳定在16.5%,15﹣64岁人口一直稳定在10 亿,那么2027 年末我国0﹣14岁人口约为亿,“老年人口抚养比”约为;(精确到1%)
(3)2016 年1 月1 日起我国开始实施“全面二胎”政策,一对夫妻可生育两个孩子,在未来10年内,假设出生率显著提高,这(填“会”或“不会”)对我国的“老年人口抚养比”产生影响.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ABC=120°,BD平分∠ABC,DAC=60°,若AB=2,BC=3,则BD的长是(  )

A. 5 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法.我们给出如下定义:如图,四边形ABCD中,AB=AD,CB=CD像这样两组邻边分别相等的四边形叫做“筝形”;

(1)小文认为菱形是特殊的“筝形”,你认为他的判断正确吗?
(2)小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB≠BC的“筝形”的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:
①他首先发现了这类“筝形”有一组对角相等,并进行了证明,请你完成小文的证明过程.
已知:如图,在”筝形”ABCD中,AB=AD,CB=CD.
求证:∠ABC=∠ADC.
证明:②小文由①得到了这类“筝形”角的性质,他进一步探究发现这类“筝形”还具有其它性质,请再写出这类“筝形”的一条性质(除“筝形”的定义外)
③继性质探究后,小文探究了这类“筝形”的判定方法,写出这类“筝形”的一条判定方法(除“筝形”的定义外):

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在ABCD中,过点D作对DE⊥AB于点E,点F在边CD上,CF=AE,连结AF,BF.

(1)求证:四边形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的角平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也出现了更多年轻人的身影.请问下面四幅球类的平面图案中,是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边三角形OAB与反比例函数y= (k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则 的值为 . (已知sin15°=

查看答案和解析>>

同步练习册答案