【题目】若实数m,n,p满足m<n<p(mp<0)且|p|<|n|<|m|,则|x﹣m|+|x+n|+|x+p|的最小值是_____.
【答案】﹣m﹣n.
【解析】
先根据mp<0,确认p>0,m<0,再根据已知可得:n<0,并画数轴标三个实数的位置及﹣n和﹣p的位置,根据图形可知:当x=﹣p时,|x﹣m|+|x+n|+|x+p|有最小值,代入可得最小值.
解:∵mp<0,
∴m、p异号,
∵m<p,
∴p>0,m<0,
∵m<n<p且|p|<|n|<|m|,
∴n<0,
如图所示:
∴当x=﹣p时,|x﹣m|+|x+n|+|x+p|有最小值,其最小值是:|x﹣m|+|x+n|+|x+p|=|﹣p﹣m|+|﹣p+n|+|﹣p+p|=﹣p﹣m﹣n+p=﹣m﹣n,
则|x﹣m|+|x+n|+|x+p|的最小值是﹣m﹣n,
故答案为:﹣m﹣n.
科目:初中数学 来源: 题型:
【题目】如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有( )条
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长方体长,宽,高.从这个长方体的一个角上挖掉一个棱长的正方体,剩下部分的体积是(______),剩下部分的表面积是(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知中,,一条直角边为3,如果是“有趣三角形”,那么这个三角形“有趣中线”的长等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于C点,点E在第一象限且四边形ACBE为矩形.
(1)求∠BCE的度数;
(2)如图2,F为线段BC上一动点,P为第四象限内抛物线上一点,连接CP、FP、BP、EF,M,N分别是线段CP,FP的中点,连接MN,当△BCP面积最大,且MN+EF最小时,求PF的长度;
(3)如图3,将△AOC绕点O顺时针旋转一个角度α(0°<α<180°),点A,C的对应点分别为A',C',直线A'C'与x轴交于点G,G在x轴正半轴上且OG=.线段KH在直线A'C'上平移( K在H左边),且KH=5,△KHC是否能成为等腰三角形?若能,请求出所有符合条件的点K的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知抛物线y=k(x+1)(x﹣3k)(且k>0)与x轴分别交于A、B两点,A点在B点左边,与Y轴交于C点,连接BC,过A点作AE∥CB交抛物线于E点,0为坐标原点.
(1)用k表示点C的坐标(0, );
(2)若k=1,连接BE,
①求出点E的坐标;
②在x轴上找点P,使以P、B、C为顶点的三角形与△ABE相似,求出P点坐标;
(3)若在直线AE上存在唯一的一点Q,连接OQ、BQ,使OQ⊥BQ,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数形结合是重要的数学思想方法之一,数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转变来解决数学问题。数轴是数形结合的最基础图形,是连接数与形的桥梁之一,请解决下面的问题:
(1)如图1,点B表示的数是1,则点A表示的数是 .
(2)如果点M表示数-2,将点M向右移动6个单位长度到达终点N,那么终点N表示的数是4,此时M、N两点间的距离是 .
(3)若∣x-0∣意义表示数x到原点的距离,则∣x-3∣的意义表示数x到3的距离;类似的式子∣x+3∣=4,则x= .
(4)由(3)可知,一般地,如果点A表示数为a,点B表示的数b,则A、B两点间的距离表示为 .
(5)如图2,数轴上的两个点A、B所表示的数分别是a,b,点O为原点。在a+b,a-b,∣a∣-∣b∣这三个运算结果中,是正数的有 个.
(6)利用数轴直接写出∣x-2∣+∣x+5∣的最小值= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.
(1)求线段的长度;
(2)求直线所对应的函数表达式;
(3)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com