【题目】如图所示,在平面直角坐标系xoy中,直线y=x+交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).
(1)当直线l与直线y=x+平行时,求出直线l的解析式;
(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;
(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.
【答案】(1)y=x;(2)①AC=2;②α=30°;(3)α=15°或60°或105°或150°
【解析】
(1)设直线l的解析式为y=x+b,把点C(1,0)代入求出b即可;
(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;
(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.
解:(1)当直线l与直线y=x+平行时,设直线l的解析式为y=x+b,
∵直线l经过点C(1,0),
∴0=+b,
∴b=,
∴直线l的解析式为y=x;
(2)①对于直线y=x+,令x=0得y=,令y=0得x=1,
∴A(0,),B(1,0),
∵C(1,0),
∴AC=,
②如图1中,作CE∥OA,
∴∠ACE=∠OAC,
∵tan∠OAC=,
∴∠OAC=30°,
∴∠ACE=30°,
∴α=30°;
(3)①如图2中,当α=15°时,
∵CE∥OD,
∴∠ODC=15°,
∵∠OAC=30°,
∴∠ACD=∠ADC=15°,
∴AD=AC=AB,
∴△ADB,△ADC是等腰三角形,
∵OD垂直平分BC,
∴DB=DC,
∴△DBC是等腰三角形;
②当α=60°时,易知∠DAC=∠DCA=30°,
∴DA=DC=DB,
∴△ABD、△ACD、△BCD均为等腰三角形;
③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,
∴△ABD、△ACD、△BCD均为等腰三角形;
④当α=150°时,易知△BDC是等边三角形,
∴AB=BD=DC=AC,
∴△ABD、△ACD、△BCD均为等腰三角形,
综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.
科目:初中数学 来源: 题型:
【题目】设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生,A级人数占本次抽取人数的百分比为 %;
(2)补全条形统计图;
(3)扇形统计图中C级对应的圆心角为 度;
(4)若该校共有1000名学生,请你估计该校D级学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF,连接EF.
(1)如图,已知线段AB,请补全图形,画出符合题意的图形.
(2)求证:BE=BF.
(3)若∠EAC=30°,则∠CFE是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
①BE的长;
②四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.
(1)求证:DC是⊙O的切线;
(2)若AD=l,BC=4,求直径AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了从甲、乙两名学生中选派一名学生参加市综合知识技能竞赛,对他们进 行了 8 次综合知识技能测试,记录如下:
学生 | 8 次测试成绩(分) | 平均数 | 中位数 | 方差 | |||||||
甲 | 95 | 82 | 88 | 81 | 93 | 79 | 84 | 78 | 85 | 35.5 | |
乙 | 83 | 92 | 80 | 95 | 90 | 80 | 85 | 75 | 84 |
(1)请你通过计算求出表格中所缺少的甲、乙两名学生这 8 次测试成绩的平均数、中位数 和方差;
(2)现要从中选派一人参加市综合知识技能竞赛,你认为选派哪名同学参加合适,请说明 理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点(不与A.E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图表示一个正比例函数与一个一次函数的图象,它们交于点A(3,4),一次函数的图象与y轴交于点B,且OA=0B
(1)求这两个函数的关系式;
(2)两直线与x轴围成的三角形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com