精英家教网 > 初中数学 > 题目详情

【题目】在正方形 ABCD 中,M BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.

(1)依题意补全图 1;

(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2

若点 P,Q,C 恰好在同一条直线上,则 BP AB 的数量关系为:

【答案】(1)详见解析;(2)①详见解析;②BP=AB.

【解析】

(1)根据要求画出图形即可;

(2)①连接BD,如图2,只要证明ADQ≌△ABP,DPB=90°即可解决问题;

②结论:BP=AB,如图3中,连接AC,延长CDN,使得DN=CD,连接AN,QN.由ADQ≌△ABP,ANQ≌△ACP,推出DQ=PB,AQN=APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;

(1)解:补全图形如图 1:

(2)①证明:连接 BD,如图 2,

∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,

AQ=AP,QAP=90°,

∵四边形 ABCD 是正方形,

AD=AB,DAB=90°,

∴∠1=2.

∴△ADQ≌△ABP,

DQ=BP,Q=3,

∵在 RtQAP 中,∠Q+QPA=90°,

∴∠BPD=3+QPA=90°,

∵在 RtBPD 中,DP2+BP2=BD2, 又∵DQ=BP,BD2=2AB2

DP2+DQ2=2AB2

②解:结论:BP=AB.

理由:如图 3 中,连接 AC,延长 CD N,使得 DN=CD,连接 AN,QN.

∵△ADQ≌△ABP,ANQ≌△ACP,

DQ=PB,AQN=APC=45°,

∵∠AQP=45°,

∴∠NQC=90°,

CD=DN,

DQ=CD=DN=AB,

PB=AB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列方程:

12xx+1)=2x+2

2x24x40

3x2x70

4)(x125x1)﹣60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,BCO的切线,DO上的一点,CDCB,延长CDBA的延长线于点E

1)求证:CDO的切线;

2)若OFBD于点F,且OF2BD4,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点EF分别在边ACBC上)

1)若△CEF△ABC相似.

AC=BC=2时,AD的长为   

AC=3BC=4时,AD的长为   

2)当点DAB的中点时,△CEF△ABC相似吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于抛物线yax2+bx+cabc是常数,a≠0),若b2ac,则称该抛物线为黄金抛物线.例如:yx2x+1是黄金抛物线

1)请再写出一个与上例不同的黄金抛物线的解析式;

2)将黄金抛物线yx2x+1沿对称轴向下平移3个单位

①直接写出平移后的新抛物线的解析式;

②新抛物线如图所示,与x轴交于ABAB的左侧),与y轴交于C,点P是直线BC下方的抛物线上一动点,连结POPC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

③当直线BC下方的抛物线上动点P运动到什么位置时,四边形 OBPC的面积最大并求出此时P点的坐标和四边形OBPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点Bx轴的正半轴上,点A坐标为(-4,0),点D的坐标为(-1,4),反比例函数的图象恰好经过点C,则k的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】, ,,,是斜边的中点,以点为顶点作,射线分别交边于点.

特例

1)如图1,若,不添加辅助线,图1中所有与相似的三角形为

操作探究:

2)将(1)中的从图1的位置开始绕点按逆时针方向旋转,得到,如图2,当射线分别交边于点时,求的值;

拓展延伸:

3)如图3中,,点是斜边的中点,以点为顶点作,射线分别交边的延长线于点,则的值为 .(用含的代数式表示,直接回答即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴是直线x=1,与x轴有两个交点,与y轴交点的坐标为(0,3),把它向下平移2个单位后,得到新的抛物线的解析式是y=ax2bxc,以下四个结论:①b24ac<0;②abc<0;③4a2bc=1;④abc>0,其中正确的是

A.①②③B.②③④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BADαE为对角线AC上的一点(不与AC重合)将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EBEF的数量关系.

1)如图1,当αβ90°时,EBEF的数量关系为   

2)如图2,当α60°β120°时,

①依题意补全图形;

②探究(1)的结论是否成立,若成立,请给出证明;若不成立,请举出反例证明.

查看答案和解析>>

同步练习册答案