【题目】如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为_____.
【答案】
【解析】
作DG⊥AE,先根据翻折变化的性质得到△DEF≌△BEF,再根据等腰三角形的性质及三角形外角的性质可得到∠AED=∠CDF,设CF=X,则DF=FB=4-X,根据勾股定理求出CF,可知tan∠AED=tan∠CDF,在Rt△ADG和Rt△EDG中分别求出DG、EC,然后根据勾股定理即可得到结论
作DG⊥BE,
∵△DEF是△BEF翻折而成,
∴△DEF≌△BEF,∠B=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠AED+45°,
∴∠AED=∠CDF,
∵CA=CB=4,CD=AD=2,
设CF=x,
∴DF=FB=4﹣x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+4=(4﹣x)2,
解得,
∵∠A=45°,AD=2,
∴,
∵,
∴,
∴,
∴,
∴.
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.
(1)当点C(0,3)时,
①求这条抛物线的表达式和顶点坐标;
②求证:∠DCE=∠BCE;
(2)当CB平分∠DCO时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段 BC上,连接AD交线段PQ于点E,且,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.
(1)求证:PC=PE;
(2)当P是边AC的中点时,求证:四边形AECF是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段 BC上,连接AD交线段PQ于点E,且,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.
(1)求证:PC=PE;
(2)当P是边AC的中点时,求证:四边形AECF是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.
(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;
(2)如图1,当点G和点M、C不重合时,求证:DG=DN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,将△ABC绕着点A旋转后,点B、C的对应点分别记为B1、C1,如果点B1落在射线BD上,那么CC1的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知,,点P为AB边上的一个动点,点E、F分别是CA,CB边的中点,过点P作于D,设,图中某条线段的长为y,如果表示y与x的函数关系的大致图象如图2所示,那么这条线段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若抛物线的顶点和与x轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线.
概念理解:
(1)如图,在△ABC中,∠BAC=90°,点D是BC的中点.试证明:以点A为顶点,且与x轴交于D、C两点的抛物线是正抛物线;
问题探究:
(2)已知一条抛物线经过x轴的两点E、F(E在F的左边),E(1,0)且EF=2若此条抛物线为正抛物线,求这条抛物线的解析式;
应用拓展:
(3)将抛物线y1=﹣x2+2x+9向下平移9个单位后得新的抛物线y2.抛物线y2的顶点为P,与x轴的两个交点分别为M、N(M在N左侧),把△PMN沿x轴正半轴无滑动翻滚,当边PN与x轴重合时记为第1次翻滚,当边PM与x轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y2的顶点P的对应点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com