【题目】如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.
(1)用含的代数式表示的长度.
(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.
(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图①,抛物线y=x2﹣x﹣3交轴于A、B两点,交y轴于点C,点D为点C关于抛物线对称轴的对称点.
(1)若点P是抛物线上位于直线AD下方的一个动点,在y轴上有一动点E,x轴上有一动点F,当△PAD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FB以每秒2个单位的速度运动到B点后停止,当点F的坐标是多少时,动点G的运动过程中所用的时间最少?
(2)如图②,在(1)问的条件下,将抛物线沿直线PB进行平移,点P、B平移后的对应点分别记为点P'、B',请问在y轴上是否存在一动点Q,使得△P'QB'为等腰直角三角形?若存在,请直接写出所有符合条件的Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).
(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x,y)落在坐标轴上的概率;
(2)直接写出点(x,y)落在以坐标原点为圆心,2为半径的圆内的概率为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片中,,折叠纸片,使点刚好落在线段上,且折痕分别于相交,设折叠后点的对应点分别为点,折痕分别于相交于点,则线段的取值范围是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En.则OnEn= AC.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月,西大附中初2019级中招体育考试已经顺利结束,在所有师生共同努力下,取得了历史性的好成绩.初二小明为了解初三哥哥姐姐们中招体育考试成绩的情况,采取抽样调查的方法,从年级各班随机调查了若干名同学的体考成绩,并将调查结果进行了整理,分成了5个小组,根据体考成绩制定出部分频数分布表和部分频数分布直方图
体育成绩频数分布表
组别 | 成绩(x分) | 频数 | 频率 |
A | 35<x≤38 | 1 | |
B | 38<x≤41 | 0.05 | |
C | 41<x≤44 | ||
D | 44<x≤47 | 6 | |
E | 47<x≤50 |
(1)在这次考察中,共调查了 名学生;并请补全频数分布直方图;
(2)被调查的学生中,有30人是满分50分,若西大附中初2019级全年级有1100多名学生,请估计该年级体考成绩满分的总人数约有多少名?
(3)初三哥哥姐姐们体测取得的辉煌成绩让初二的学弟学妹们信心大增,为了调动初二学子跳绳积极性,初二年级将举行1分钟跳绳比赛,每班推荐一人参赛,小明所在的班级李杰和陈亮两人均想报名参赛,为了公平选拔,班主任让小明统计了两人近10次的跳绳成绩(单位:个/分),如下:
李杰成绩(个/分) | 170 | 175 | 180 | 190 | 195 | |||||
次数 | l | 1 | 3 | 2 | 3 | |||||
陈亮成绩(个/分) | 165 | 180 | 190 | 195 | 200 | |||||
次数 | 2 | 2 | 3 | 2 | 1 | |||||
则李杰10次成绩的中位数是 ;陈亮10次成绩的众数是 ,请你通过计算两位同学的平均成绩和方差帮班主任选一名同学参赛,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七(1)班同学为了解2017年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:
月均用水量 | 频数(户数) | 百分比 |
6 | ||
16 | ||
10 | ||
4 | ||
2 |
(1)请将下列频数分布表和频数分布直方图补充完整;
(2)求该小区月均用水量不超过的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计该小区月均用水量超过的家庭数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com