【题目】y=﹣2x+4直线交x轴于点A,交y轴于点B,抛物线y=﹣(x﹣m)(x﹣6)(m>0)经过点A,交x轴于另一点C,如图所示.
(1)求抛物线的解析式.
(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.
①当∠DPE=∠CAD时,求t的值;
②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.
【答案】(1)y=﹣x2+8x﹣12;(2)① ;②t的值为1﹣或
【解析】
(1)先由直线解析式求得点A、B的坐标,将点A坐标代入抛物线解析式可求出m的值,从而得出答案;
(2)①由(1)可求得AD=CD=2,继而得∠DAC=∠DCA,由BD∥AC可得∠DPE=∠PQA,再结合已知∠DPE=∠DAC,可证明四边形PDQC是平行四边形,∴PD=QC
于是得出关于t的方程4﹣2t=3t,解方程即可;
②分点N在AB上和点N在AD上两种情况进行讨论求解. 当点N在AB上时,先用t表示出PN=2BP=4t=ME,再依次表示出DE=,AE=2﹣2t,再由BD∥OC得,代入即得,解出方程即可(注意取舍);点N在AD上时,先证明点E、N重合,得PQ⊥BD,于是BP=OQ,由此可得关于t的方程,解出即得结果.
解:(1)当x=0时,y=4,
∴点B坐标(0,4)
当y=0时,x=2
∴点A(2,0)
∵抛物线y=﹣(x﹣m)(x﹣6)(m>0)经过点A,
∴0=﹣(2﹣m)(2﹣6)
∴m1=2,m2=0(不合题意舍去)
∴抛物线解析式为:y=﹣x2+8x﹣12
(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,
∴顶点D(4,4)
∵点B坐标(0,4)
∴BD∥OC,BD=4,
∵y=﹣x2+8x﹣12与x轴交于点A,点C
∴点C(6,0),点A(2,0)
∴AC=4
∵点D(4,4),点C(6,0),点A(2,0)
∴AD=CD=2,
∴∠DAC=∠DCA
∵BD∥AC
∴∠DPE=∠PQA,
且∠DPE=∠DAC
∴∠PQA=∠DAC
∴∠PQA=∠DCA
∴PQ∥DC,且BD∥AC
∴四边形PDQC是平行四边形
∴PD=QC
∴4﹣2t=3t
∴t=
②如图,若点N在AB上时,即0≤t≤1
∵BD∥OC
∴∠DBA=∠OAB,
∵点B坐标(0,4),A(2,0),点D(4,4)
∴AB=AD=2,OA=2,OB=4
∴∠ABD=∠ADB,
∴tan∠OAB==tan∠DBA=
∴PN=2BP=4t,
∴ME=PN=4t,
∵tan∠ADB=tan∠ABD==2
∴MD=2t
∴DE=
∴AE=AD﹣DE=2﹣2t
∵BD∥OC
∴
∴
∴5t2﹣10t+4=0
∴t1=1+(不合题意舍去),t2=1﹣
如图,若点N在AD上,即1<t
∵PN=EM,
∴点E、N重合,此时PQ⊥BD,
∴BP=OQ,
∴2t=6﹣3t,
解得:t=,
综上所述:当PN=EM时,t的值为1﹣或.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中条直线为,直线交轴于点,交轴于点,直线交轴于点,过点作轴的平行线交于点,点关于轴对称,抛物线过三点,下列判断中:①;②;③抛物线关于直线对称;④抛物线过点;⑤四边形,其中正确的个数有( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得_______________;
(Ⅱ)解不等式②,得_______________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.
(1)求证:△AFG∽△DFC;
(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=BC=5,AB=6,求四边形AMCM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 | 0.5 | |
戏剧 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合计 | 1 |
根据图表提供的信息,解答下列问题:
(1)九年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2 人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:
①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.
其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为(m2),种草所需费用1(元)与(m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+30000(0≤≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点, , .下列说法正确的是( )
A. △与△ABC是位似图形,位似中心是点(1,0)
B. △与△ABC是位似图形,位似中心是点(0,0)
C. △与△ABC是相似图形,但不是位似图形
D. △与△ABC不是相似图形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com