【题目】如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,若顶点B的纵坐标为2,∠B=60°,OC=AC.
(1)请写出A、B、C三点的坐标;
(2)点P是斜边OB上的一个动点,则△PAC的周长的最小值为多少?
(3)若点P是OB的中点,点E在AO边上,将△OPE沿PE翻折,使得点O落在O'处,当O'E⊥AC时,在坐标平面内是否存在一点Q,使得△BAQ≌△O′PE,若存在,请直接写出Q点坐标;若不存在,请说明理由.
【答案】(1)点A(6,0),点B(6,2 ),点C(2,0);(2)△PAC周长的最小值为2+4.(3)当点Q在AB右侧,点Q(,),当点Q在AB左侧,点Q(,)
【解析】
(1)由直角三角形的性质可得OA=6,即可求点A、点B、点C坐标;
(2)作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案;
(3)由折叠的性质可得∠OEM=∠OE'M=45°,△OEP≌△O'EP,分两种情况讨论,由直角三角形的性质可求解.
(1)∵AB⊥OA,∠B=60°,AB=2,
∴OA=AB=6,
∴点B(6,2),点A(6,0)
∵OC=AC,
∴OC=2,AC=4,
∴点C(2,0);
(2)如图1,作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,
∵DP=PA,
∴PA+PC=PD+PC=CD,
∵AB=2,OA=6,
在Rt△AOB中,由勾股定理得:OB=4=4,
∴S△AOB=×OA×AB=×OB×AM,
即×6×2=×4×AM,
∴AM=3,
∴AD=2×3=6,
∵∠AMB=90°,∠B=60°,
∴∠BAM=30°,
∵∠BAO=90°,
∴∠OAM=60°,
∵DN⊥OA,
∴∠NDA=30°,
∴AN=AD=3=ON,
在Rt△AND中,由勾股定理得:DN==3,
∴CN=ON﹣OC=3﹣2=1,
在Rt△DNC中,由勾股定理得:DC===2,
即PA+PC的最小值是2,
∴△PAC周长的最小值为:2+4;
(3)如图2,
∵点P是OB的中点,
∴OP=2=AB,
∵将△OPE沿PE翻折,且O'E⊥AC
∴∠OEM=∠OE'M=45°,△OEP≌△O'EP,
∴∠OPE=∠OEM﹣∠AOB=15°,
∵△BAQ≌△O′PE,
∴△BAQ≌△OPE,
∴∠ABQ=30°,∠BAQ=15°,
当点Q在AB右侧,过点Q作QH⊥AB,作∠AQF=∠BAQ=15°,
∴∠HFQ=30°,AF=FQ,
设HQ=a,
∵∠ABQ=30°=∠HFQ,HQ⊥AB,
∴FQ=2a,BH=HF=a,
∴AF=2a,
∴AB=2a+2a=2,
∴a=,
∴AH=,
∴点Q(,)
当点Q在AB左侧,同理可求点Q(,)
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若( ,y1)、(,y2)是抛物线上的两点,则y1<y2;⑤>m(am+b)(其中m≠).其中说法正确的是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=x2,y=(x+2)2+2和y=(x+2)2﹣3.
(1)在同一个平面直角坐标系中画出这三个函数的图象;
(2)当图中二次函数的函数值y随x的增大而同时增大时,求x的取值范围;当函数值y随x的增大面同时减小时,求x的取值范围.(直接写答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的两个根,则实数a、b、m、n的大小关系是( )
A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在线段BC上,E是线段AD的一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.
(1)如图1,求证:AE=BF;
(2)当A、E、F三点共线时,如图2,若BF=2,求AF的长;
(3)如图3,若∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y+2与x成正比例,且x=-2时,y=0
(1)求y与x之间的函数表达式,并画出函数的图象;
(2)利用图象直接写出:当y>0时,x的取值范围;
(3)设点P在y轴负半轴上,(2)中的图象与x轴,y轴分别交于A,B两点,且S△ABP=4,求P点的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在ABCD中,∠D=45°,E为BC上一点,连接AC,AE,
(1)若AB=2,AE=4,求BE的长;
(2)如图2,过C作CM⊥AD于M,F为AE上一点,CA=CF,且∠ACF=∠BAE,求证:AF+AB=AM.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com