【题目】如图1,在ABCD中,∠D=45°,E为BC上一点,连接AC,AE,
(1)若AB=2,AE=4,求BE的长;
(2)如图2,过C作CM⊥AD于M,F为AE上一点,CA=CF,且∠ACF=∠BAE,求证:AF+AB=AM.
【答案】(1)2-2;(2)见解析
【解析】
(1)如图(1),过A作AH⊥BC于H,解直角三角形即可得到结论;
(2)如图(2),在AM上截取MN=MC,在△ACF内以AF为底边作等腰直角三角形AFP,连接CP,根据平行线的性质函数三角形的内角和得到∠CAN=∠PAC,求得∠APC=∠FPC==135°=∠ANC,根据全等三角形的性质得到AP=AN,于是得到结论.
解:(1)如图(1),过A作AH⊥BC于H,
在ABCD中,∠D=∠B=45°,AB=2,
∴AH=BH=2,
∵AE=4,
∴EH==2,
∴BE=BH-EH=2-2;
(2)如图(2),在AM上截取MN=MC,在△ACF内以AF为底边作等腰直角三角形AFP,连接CP,
∵∠AFC+∠FAC+∠ACF=180°,∠B+∠FAC+∠BAF+∠CAN=180°,
∴∠AFC=∠B+∠CAN=45°+∠CAN,
∵∠FAC=∠FAP+∠PAC=45°+∠PAC,∴∠FAC=∠∠AFC,
∴∠CAN=∠PAC,
∵∠APC=∠FPC==135°=∠ANC,
∴△APC≌△ANC(AAS),
∴AP=AN,
∵AM=AN+MN,
∴AM=AN+MN=AF+CD=AF+AB,
即AF+AB=AM.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,若顶点B的纵坐标为2,∠B=60°,OC=AC.
(1)请写出A、B、C三点的坐标;
(2)点P是斜边OB上的一个动点,则△PAC的周长的最小值为多少?
(3)若点P是OB的中点,点E在AO边上,将△OPE沿PE翻折,使得点O落在O'处,当O'E⊥AC时,在坐标平面内是否存在一点Q,使得△BAQ≌△O′PE,若存在,请直接写出Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线与直线、分别交于点、,与互补.
(1)试判断直线与直线的位置关系,并说明理由.
(2)如图2,与的角平分线交于点,与交于点,点是上一点,且,求证:.
(3)如图3,在(2)的条件下,连接,是上一点使,作平分,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店出售一种水果,经过市场估算,若每个售价为20元时,每周可卖出300个.经过市场调查,如果每个水果每降价1元,每周可多卖出25个,若设每个水果的售价为x元(x<20).
(1)则这一周可卖出这种水果为________个(用含x的代数式表示);
(2)若该周销售这种水果的收入为6400元,那么每个水果的售价应为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)模型建立:
如图,等腰直角三角形中,,,直线经过点,过作于,过作于.求证:;
(2)模型应用:
①如图,一次函数的图象分别与轴、轴交于点、,以线段为腰在第一象限内作等腰直角三角形,则点的坐标为___________(直接写出结果)
②如图,在和中,,,,连接、,作于点,延长与交于点,求证:是的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的三个顶点的坐标分别为、、. 与关于轴对称,与关于轴对称,点、、分别是点、、的对应点,点、、分别是、、的对应点.
(1)画出与,并写出点、、的坐标;
(2)连接、,求六边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com