【题目】如图,在Rt△ABC中,AC=6cm,BC=8cm.点M从点A出发,以每秒1cm的速度沿AC方向运动:同时点N从点C出发,以每秒2cm的速度沿CB方向运动,当点N到达点B时,点M同时停止运动.
(1)运动几秒时,△CMN的面积为8cm2?
(2)△CMN的面积能否等于12cm2?若能,求出运动时间:若不能,请说明理由.
【答案】(1)2秒或4秒;(2)不能,理由见解析.
【解析】
(1)设运动t秒后△CMN的面积等于8cm2,分别表示出线段CM和线段CN的长,再利用三角形的面积公式列出方程求解即可;
(2)根据配方法可求△CMN的面积能否等于12cm2.
解:(1)设运动t秒后△CMN的面积等于8cm2,根据题意得:
CM=6﹣t,CN=2t,
则△CMN的面积是:
CMCN=×(6﹣t)×2t=8,
解得t1=2,t2=4,
故经过2秒或4秒后,△CMN的面积等于8cm2.
(2)△CMN的面积能否等于12cm2,
理由如下:
S△CMN=×(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,
则当t=3时,△CMN的面积最大为9,
∴△CMN的面积不能等于12cm2.
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(﹣3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点:
①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
②在抛物线的对称轴上找出一点Q,使BQ+CQ的值最小,并求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=58°,求∠BDF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx﹣3的图象与x轴的两个交点分别为A(1,0)、B(3,0),与y轴的交点为C.
(1)求这个二次函数的表达式;
(2)在x轴上方的二次函数图象上,是否存在一点E使得以B、C、E为顶点的三角形的面积为?若存在,求出点E坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年九龙口诗词大会在九龙口镇召开,我校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.
(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;
(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是( )
A. 120°B. 130°C. 140°D. 150°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.
(1)求证:∠BCE=∠DCF;
(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com