精英家教网 > 初中数学 > 题目详情

【题目】(在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2 , 理由如下:如图2,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2 , 在Rt△ADB中,AD2=c2﹣(a﹣x)2
∴a2+b2=c2+2ax
∵a>0,x>0
∴2ax>0
∴a2+b2>c2
∴当△ABC为锐角三角形时,a2+b2>c2
所以小明的猜想是正确的.

(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.
(2)温馨提示:在图3中,作BC边上的高.
(3)证明你猜想的结论是否正确.

【答案】
(1)

解:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2


(2)

解:如图3,过点A作AD⊥BC于点D


(3)

解:证明:如图3,设CD=x.

在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a+x)2

∴a2+b2=c2﹣2ax

∵a>0,x>0

∴2ax>0

∴a2+b2<c2

∴当△ABC为钝角三角形时,a2+b2<c2


【解析】(1)根据题意可猜测:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)根据题意可作辅助线:过点A作AD⊥BC于点D;(3)然后设CD=x,分别在Rt△ADC与Rt△ADB中,表示出AD2 , 即可证得结论.此题属于三角形的综合题.考查了勾股定理以及三角形的面积问题.注意理解题意是解此题的关键.
【考点精析】解答此题的关键在于理解三角形三边关系的相关知识,掌握三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P,Q分别是边长为4 cm的等边三角形ABCAB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1 cm/s,连接AQ,CP,相交于点M.下面四个结论正确的有________(填序号).①BP=CM; ②△ABQ ≌△CAP ;③∠CMQ的度数不变,始终等于60;④当第ss时,△PBQ为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.

(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等组 的关联方程是________

(2)若不等式组 的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可)

(3)若方程 3-x=2x,3+x= 都是关于 x 的不等式组 的关联方程,直接写出 m 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).

Ⅰ)求△ABC的面积;

Ⅱ)在图中作出△ABC关于轴的对称图形△A1B1C1,并写出点A1、B1、C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点A、B、C在同一直线上,AB=2,BC=1,分别以AB、BC为边,在AC同侧作等边ABD和等边BCE,分别联结AE、CD.

(1)找出图中的全等三角形(不添加辅助线),并证明你的结论.

(2)线段AE与线段CD的关系是:AE CD(填>、=、<).AECD的夹角是: .

(3) ABD固定不动,使BCE绕着点B旋转,①这时(2)得出的结论还成立吗(不要求证明)?

②在旋转过程中,线段DC的长是变化的,它的变化范围是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.

(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:

①∠ABC=ADC;

AC与BD相互平分;

AC,BD分别平分四边形ABCD的两组对角;

四边形ABCD的面积S=ACBD.

正确的是 (填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某开发区有一块四边形的空地,如图所示,现计划在空地上种植草皮,经测量AB=3mBC=12mCD=13mDA=4m,若每平方米草皮需要200元,问要多少投入?

查看答案和解析>>

同步练习册答案