【题目】“魅力数学”社团活动时,张老师出示了如下问题:
如图①,已知四边形ABCD中,AC平分∠DAB,∠DAB=120°,∠B与∠D互补,试探究线段AB,AD,AC之间的数量关系;
小敏反复探索,不得其解,张老师提示道:“数学中常通过把一个问题特殊化来找到解题思路”,于是,小敏想,若将四边形ABCD特殊化,看如何解决问题:
(1)特殊情况入手
添加条件:“∠B=∠D”,如图②易知在Rt△CDA中,∠DCA=30°,所以,写出边AD与AC之间的数量关系,同理可得AB与AC的数量关系,由此得AB,AD,AC之间的数量关系;
(2)解决原来问题
受到(1)的启发,在原问题上,添加辅助线,过点C分别作AB,AD的垂线,垂足分别为E、F,如图③,请写出探究过程;
(3)解后反思
“一题多解”是数学解题的魅力之一,小敏在张老师的引导下,受探究结论的启发,结合图中的60°角,通过构造等边三角形,利用三角形全等同样解决了该问题,请在图①中作出辅助线,并简述你的探究过程.
【答案】(1)AD=AC,AD+AB=AC;(2)AB+AD=AC,探究过程见解析;(3)AC= AB+AD.探究过程见解析.
【解析】
(1)根据∠B+∠D=180°且∠B=∠D知∠B=∠D=90°,由AC平分∠DAB,∠DAB=120°知∠DAC=∠BAC=60°,利用直角三角形30°角所对直角边等于斜边的一半求解可得;
(2)先证△CDF≌△CBE得DF=BE,据此得AB+AD=AE+BE+AD=AE+DF+AD=AE+AF=AC;
(3)延长AB到点E,使得AE=AC,据此可得△ACE为等边三角形,进一步知AC=EC,∠DAC=∠E=60°,证△ADC≌△EBC得AD=EB,进一步求解可得.
(1)∵∠B+∠D=180°,且∠B=∠D,
∴∠B=∠D=90°,
又∵AC平分∠DAB,∠DAB=120°,
∴∠DAC=∠BAC=60°,
∴∠ACD=∠ACB=30°,
则AD=AC,AB=AC,
∴AD+AB=AC+AC=AC,
(2)∵AC为∠DAB的平分线,CF⊥AD,CE⊥AB,
∴CF=CE.
∵∠B与∠ADC互补,∠ADC与∠CDF互补,
∴∠CDF=∠B.
又∵∠F=∠CEB=90°,
∴△CDF≌△CBE(AAS),
∴DF=BE.
∴AB+AD
=AE+BE+AD
=AE+DF+AD
=AE+AF
=AC,
即AB+AD=AC.
(3)如图,延长AB到点E,使得AE=AC.
∵∠CAB=∠BAD=60°,
∴△ACE为等边三角形.
∴AC=EC,∠DAC=∠E=60°.
又∵∠ABC与∠D互补,
∴∠D=∠CBE.
∴△ADC≌△EBC(AAS),
∴AD=EB.
∴AC=AE=AB+EB=AB+AD.
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y=的图象上的一点A(m,n)在第一象限内,点B在x轴的正半轴上,且AB=AO,过点B作BC⊥x轴,与线段OA的延长线相交于点C,与反比例函数的图象相交于点D.
(1)用含m的代数式表示点D的坐标;
(2)求证:CD=3BD;
(3)联结AD、OD,试求△ABD的面积与△AOD的面积的比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣2x的图象与二次函数y=﹣x2+3x图象的对称轴交于点B.
(1)写出点B的坐标;
(2)已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段统计如下:
学业考试体育成绩(分数段)统计表 | ||
分数段 | 人数(人) | 频率 |
A | 48 | 0.2 |
B | a | 0.25 |
C | 84 | 0.35 |
D | 36 | b |
E | 12 | 0.05 |
分数段为:(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)
根据上面提供的信息,回答下列问题:
(1)在统计表中,a的值为 , b的值为 ,
(2)将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);
(3)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)
(4)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)请你计算扇形统计图中八年级学生体能测试结果为D等级的扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.
请完善解答过程,并在括号内填写相应的理论依据.
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代换)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性质)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2,
(1)求CD的长;
(2)求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.
(1)如图1,若∠AOM=30°,求∠CON的度数;
(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);
(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB的下方.
①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;
②当∠AOC=3∠BON时,求∠AOM的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com