【题目】如图,在中,,以为直径的圆交于点,过点作于点,交的延长线于点.
(1)求证:;
(2)求证:是圆的切线;
(3)若圆的半径为3,,求的长.
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC中,∠ACB=90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E,已知∠A=30°,AB=4cm,在点D由点A到点B运动的过程中,设AD=xcm,AE=ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | … | 1 | 2 | 3 | … | ||||
y/cm | … | 0.4 | 0.8 | 1.0 |
| 1.0 | 0 | 4.0 | … |
(说明:补全表格时相关数值保留一位小数)
(2)在如图2的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AE=AD时,AD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:
(1)求样本中成绩类别为“中”的人数,并将条形统计图补充完整;
(2)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施,使贫困户的生活条件得到改善,生活质量明显提高。某旗县为了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分四个类别A、非常满意;B、满意;C、基本满意;D、不满意.依据调查数据绘制成条形统计图和扇形统计图(不完整).根据以上信息,解答下列问题:
(1)D类别在扇形统计图中对应的圆心角度数是 ;
(2)将条形统计图补充完整;
(3)市扶贫办从该旗县甲乡镇3户和乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一辆轿车在经过某路口的感应线B和C处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC为6.2m,在感应线B、C两处测得电子警察A的仰角分别为∠ABD=45°,∠ACD=28°.求电子警察安装在悬臂灯杆上的高度AD的长.(结果精确到0.1米)(参考数据:sin28°=0.47,cos28°=0.88,tan28°=0.53)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据道路管理规定,在广州某段笔直公路上行驶的车辆,限速40千米/时;已知交警测速点到该公路点的距离为米,,(如图所示),现有一辆汽车由往方向匀速行驶,测得此车从点行驶到点所用的时间为2秒.
(1)求测速点到该公路的距离.
(2)通过计算判断此车是否超速.(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;
(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com